Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 68 | 2 |

Tytuł artykułu

Deviation from weak Banach–Saks property for countable direct sums

Autorzy

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
We introduce a seminorm for bounded linear operators between Banach spaces that shows the deviation from the weak Banach–Saks property. We prove that if (Xv) is a sequence of Banach spaces and a Banach sequence lattice E has the Banach–Saks property, then the deviation from the weak Banach–Saks property of an operator of a certain class between direct sums E(Xv) is equal to the supremum of such deviations attained on the coordinates Xv. This is a quantitative version for operators of the result for the Köthe–Bochner sequence spaces E(X) that if E has the Banach–Saks property, then E(X) has the weak Banach–Saks property if and only if so has X.

Słowa kluczowe

EN

Rocznik

Tom

68

Numer

2

Daty

wydano
2014
online
2015-05-23

Twórcy

Bibliografia

  • Banach, S., Saks, S., Sur la convergence forte dans les champs Lp, Studia Math. 2 (1930), 51–57.
  • Beauzamy, B., Banach–Saks properties and spreading models, Math. Scand. 44 (1979), 357–384.
  • Brunel, A., Sucheston, L., On B-convex Banach spaces, Math. Systems Theory 7 (1974), 294–299.
  • Erdös, P., Magidor, M., A note on regular methods of summability and the Banach– Saks property, Proc. Amer. Math. Soc. 59 (1976), 232–234.
  • Krassowska, D., Płuciennik, R., A note on property (H) in Köthe–Bochner sequence spaces, Math. Japon. 46 (1997), 407–412.
  • Krein, S. G., Petunin, Yu. I., Semenov, E. M., Interpolation of linear operators, Translations of Mathematical Monographs, 54. American Mathematical Society, Providence, R.I., 1982.
  • Kryczka, A., Alternate signs Banach–Saks property and real interpolation of operators, Proc. Amer. Math. Soc. 136 (2008), 3529–3537.
  • Kryczka, A., Mean separations in Banach spaces under abstract interpolation and extrapolation, J. Math. Anal. Appl. 407 (2013), 281–289.
  • Lin, P.-K., Köthe–Bochner function spaces, Birkhäuser Boston, Inc., Boston, MA, 2004.
  • Lindenstrauss, J., Tzafriri, L., Classical Banach spaces. II. Function spaces, Springer- Verlag, Berlin–New York, 1979.
  • Mastyło, M., Interpolation spaces not containing l1, J. Math. Pures Appl. 68 (1989), 153–162.
  • Partington, J. R., On the Banach–Saks property, Math. Proc. Cambridge Philos. Soc. 82 (1977), 369–374.
  • Rosenthal, H. P., Weakly independent sequences and the Banach–Saks property, Bull. London Math. Soc. 8 (1976), 22–24.
  • Szlenk, W., Sur les suites faiblement convergentes dans l’espace L, Studia Math. 25 (1965), 337–341.

Identyfikatory

Identyfikator YADDA

bwmeta1.element.ojs-doi-10_17951_a_2014_68_2_51