ArticleOriginal scientific text
Title
Weighted sub-Bergman Hilbert spaces
Authors ,
Abstract
We consider Hilbert spaces which are counterparts of the de Branges-Rovnyak spaces in the context of the weighted Bergman spaces , . These spaces have already been studied in [8], [7], [5] and [1]. We extend some results from these papers.
Bibliography
- Abkar, A., Jafarzadeh, B., Weighted sub-Bergman Hilbert spaces in the unit disk, Czechoslovak Math. J. 60 (2010), 435-443.
- Cowen, C., MacCluer, B., Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995.
- Hedenmalm, H., Korenblum, B., Zhu, K., Theory of Bergman Spaces, Spinger-Verlag, New York, 2000.
- Sarason, D., Sub-Hardy Hilbert Spaces in the Unit Disk, Wiley, New York, 1994.
- Sultanic, S., Sub-Bergman Hilbert spaces, J. Math. Anal. Appl. 324 (2006), 639-649.
- Symesak, F., Sub-Bergman spaces in the unit ball of Cn, Proc. Amer. Math. Soc. 138 (2010), 4405-4411.
- Zhu, K., Sub-Bergman Hilbert spaces in the unit disk, Indiana Univ. Math. J. 45 (1996), 165-176.
- Zhu, K., Sub-Bergman Hilbert spaces in the unit disk, II, J. Funct. Anal. 202 (2003), 327-341.
- Zhu, K., Operator Theory in Function Spaces, Dekker, New York, 1990.
- Zorboska, N., Composition operators induced by functons with supremum strictly smaller than 1, Proc. Amer. Math. Soc. 106 (1989), 679-684.