ArticleOriginal scientific text
Title
Location of the critical points of certain polynomials
Authors ,
Abstract
Let denote the unit disk in the complex plane . In this paper, we study a family of polynomials with only one zero lying outside . We establish criteria for to satisfy implying that each of and has exactly one critical point outside .
Keywords
Polynomial, critical point, anti-reciprocal.
Bibliography
- Boyd, D. W., Small Salem numbers, Duke Math. J. 44 (1977), 315–328.
- Bertin, M. J., Decomps-Guilloux, A., Grandet-Hugot, M., Pathiaux-Delefosse, M., Schreiber, J. P., Pisot and Salem Numbers, Birkhauser Verlag, Basel, 1992.
- Chaiya, S., Complex dynamics and Salem numbers, Ph.D. Thesis, University of Illinois at Urbana–Champaign, 2008.
- Palka, Bruce P., An Introduction to Complex Function Theory, Springer-Verlag, New York, 1991.
- Rahman, Q. I., Schmeisser, G., Analytic Theory of Polynomials, Clarendon Press, Oxford, 2002.
- Salem, R., Power series with integral coefficients, Duke Math. J. 12 (1945), 153–173.
- Salem, R., Algebraic Numbers and Fourier Analysis, D. C. Heath and Co., Boston, Mass., 1963.
- Sheil-Small, T., Complex Polynomials, Cambridge University Press, Cambridge, 2002.
- Walsh, J. L., Sur la position des racines des derivees d’un polynome, C. R. Acad. Sci. Paris 172 (1921), 662–664.