ArticleOriginal scientific text
Title
Linearly-invariant families and generalized Meixner–Pollaczek polynomials
Authors , ,
Abstract
The extremal functions realizing the maxima of some functionals (e.g. , and ) within the so-called universal linearly invariant family (in the sense of Pommerenke [10]) have such a form that looks similar to generating function for Meixner-Pollaczek (MP) polynomials [2], [8]. This fact gives motivation for the definition and study of the generalized Meixner-Pollaczek (GMP) polynomials of a real variable as coefficients of where the parameters , , satisfy the conditions: , , . In the case we have the well-known (MP) polynomials. The cases and leads to new sets of polynomials which we call quasi-Meixner-Pollaczek polynomials and strongly symmetric Meixner-Pollaczek polynomials. If , then we have an obvious generalization of the Gegenbauer polynomials.The properties of (GMP) polynomials as well as of some families of holomorphic functions defined by the Stieltjes-integral formula, where the function is a kernel, will be discussed.
Bibliography
- Araaya, T. K., The symmetric Meixner–Pollaczek polynomials, Uppsala Dissertations in Mathematics, Department of Mathematics, Uppsala University, 2003.
- Chihara, T. S., An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
- Duren, P. L., Univalent Functions, Springer, New York, 1983.
- Erdelyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G., Higher Transcendental Functions, vol. I, McGraw-Hill Book Company, New York, 1953.
- Golusin, G., Geometric Theory of Functions of a Complex Variable, Translations of Mathematical Monographs, no. 26, Amer. Math. Soc., Providence, R.I., 1969.
- Ismail, M., On sieved ultraspherical polynomials I: Symmetric Pollaczek analogues, SIAM J. Math. Anal. 16 (1985), 1093–1113.
- Kiepiela, K., Naraniecka, I., Szynal, J., The Gegenbauer polynomials and typically real functions, J. Comp. Appl. Math 153 (2003), 273–282.
- Koekoek, R., Swarttouw, R. F., The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Report 98-17, Delft University of Technology, 1998.
- Koornwinder, T. H., Meixner–Pollaczek polynomials and the Heisenberg algebra, J. Math. Phys. 30 (4) (1989), 767–769.
- Pommerenke, Ch., Linear-invariant Familien analytischer Funktionen, Mat. Ann. 155 (1964), 108–154.
- Poularikas, A. D., The Mellin Transform, The Handbook of Formulas and Tables for Signal Processing, CRC Press LLC, Boca Raton, 1999.
- Robertson, M. S., On the coefficients of typically-real functions, Bull. Amer. Math. Soc. 41 (1935), 565–572.
- Rogosinski, W. W., Uber positive harmonische Entwicklungen und typisch-reelle Potenzreihen, Math. Z. 35 (1932), 93–121.
- Starkov, V. V., The estimates of coefficients in locally-univalent family
, Vestnik Lenin. Gosud. Univ. 13 (1984), 48–54 (Russian). - Starkov, V. V., Linear-invariant families of functions, Dissertation, Ekatirenburg, 1989, 1–287 (Russian).
- Szynal, J., An extension of typically-real functions, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 48 (1994), 193–201.
- Szynal, J., Waniurski, J., Some problems for linearly invariant families, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 30 (1976), 91–102.