Czasopismo
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
We describe all \(\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}\)-natural operators \(D\colon Q^{\tau}_{proj-proj} \rightsquigarrow QT^*\) transforming projectable-projectable classical torsion-free linear connections \(\nabla\) on fibred-fibred manifolds \(Y\) into classical linear connections \(D(\nabla)\) on cotangent bundles \(T^*Y\) of \(Y\). We show that this problem can be reduced to finding \(\mathcal{F}^2 \mathcal{M}_{m_1,m_2,n_1,n_2}\)-natural operators \(D\colon Q^{\tau}_{proj-proj}\rightsquigarrow(T^*,\otimes^pT^*\otimes\otimes^q T)\) for \(p=2\), \(q=1\) and \(p=3\), \(q=0\).
Rocznik
Tom
Numer
Opis fizyczny
Daty
wydano
2013
online
2015-07-15
Twórcy
autor
Bibliografia
- Doupovec, M., Mikulski, W. M., On prolongation of higher order onnections, Ann. Polon. Math. 102, no. 3 (2011), 279–292.
- Kolar, I., Connections on fibered squares, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 59 (2005), 67–76.
- Kolar, I., Michor, P. W., Slovak, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin–Heidelberg, 1993.
- Kurek, J., Mikulski, W. M., On prolongations of projectable connections, Ann. Polon. Math. 101, no. 3 (2011), 237–250.
- Kurek, J., Mikulski, W. M., The natural liftings of connections to tensor powers of the cotangent bundle, AGMP-8 Proceedings (Brno 2012), Miskolc Mathematical Notes, to appear.
- Kures, M., Natural lifts of classical linear connections to the cotangent bundle, Suppl. Rend. Mat. Palermo II 43 (1996), 181–187.
- Mikulski, W. M., The jet prolongations of fibered-fibered manifolds and the flow operator, Publ. Math. Debrecen 59 (3–4) (2001), 441–458.
- Yano, K., Ishihara, S., Tangent and Cotangent Bundles, Marcel Dekker, Inc., New York, 1973.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ojs-doi-10_17951_a_2013_67_1_1-10