ArticleOriginal scientific text

Title

On lifts of projectable-projectable classical linear connections to the cotangent bundle

Authors

Abstract

We describe all F2Mm1,m2,n1,n2-natural operators D:QprojprojτQT transforming projectable-projectable classical torsion-free linear connections on fibred-fibred manifolds Y into classical linear connections D() on cotangent bundles TY of Y. We show that this problem can be reduced to finding F2Mm1,m2,n1,n2-natural operators D:Qprojprojτ(T,pTqT) for p=2, q=1 and p=3, q=0.

Keywords

Fibred-fibred manifold, projectable-projectable linear connection, natural operator.

Bibliography

  1. Doupovec, M., Mikulski, W. M., On prolongation of higher order onnections, Ann. Polon. Math. 102, no. 3 (2011), 279–292.
  2. Kolar, I., Connections on fibered squares, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 59 (2005), 67–76.
  3. Kolar, I., Michor, P. W., Slovak, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin–Heidelberg, 1993.
  4. Kurek, J., Mikulski, W. M., On prolongations of projectable connections, Ann. Polon. Math. 101, no. 3 (2011), 237–250.
  5. Kurek, J., Mikulski, W. M., The natural liftings of connections to tensor powers of the cotangent bundle, AGMP-8 Proceedings (Brno 2012), Miskolc Mathematical Notes, to appear.
  6. Kures, M., Natural lifts of classical linear connections to the cotangent bundle, Suppl. Rend. Mat. Palermo II 43 (1996), 181–187.
  7. Mikulski, W. M., The jet prolongations of fibered-fibered manifolds and the flow operator, Publ. Math. Debrecen 59 (3–4) (2001), 441–458.
  8. Yano, K., Ishihara, S., Tangent and Cotangent Bundles, Marcel Dekker, Inc., New York, 1973.
Main language of publication
English
Published
2013
Published online
2015-07-15
Exact and natural sciences