ArticleOriginal scientific text

Title

Majorization for certain classes of meromorphic functions defined by integral operator

Authors ,

Abstract

Here we investigate a majorization problem involving starlike meromorphic functions of complex order belonging to a certain subclass of meromorphic univalent functions defined by an integral operator introduced recently by Lashin.

Bibliography

  1. Altintas, O., Ozkan, O., Srivastava, H. M., Majorization by starlike functions of complex order, Complex Variables Theory Appl. 46 (2001), 207-218.
  2. Goyal, S. P., Goswami, P., Majorization for certain classes of analytic functionsdefined by fractional derivatives, Appl. Math. Lett. 22 (12) (2009), 1855-1858.
  3. Goyal, S. P., Bansal S. K., Goswami, P., Majorization for certain classes of analytic functions defined by linear operator using differential subordination, J. Appl. Math. Stat. Inform. 6 (2) (2010), 45-50.
  4. Goswami, P., Wang, Z.-G., Majorization for certain classes of analytic functions, Acta Univ. Apulensis Math. Inform. 21 (2009), 97-104.
  5. Goswami, P., Aouf, M. K., Majorization properties for certain classes of analytic functions using the Salagean operator, Appl. Math. Lett. 23 (11) (2010), 1351-1354.
  6. Goswami, P., Sharma, B., Bulboaca, T., Majorization for certain classes of analytic functions using multiplier transformation, Appl. Math. Lett. 23 (10) (2010), 633-637.
  7. Jung, I. B., Kim, Y. C., Srivastava, H. M., The Hardy space of analytic functions associated with certain one-parameter families of integral operator, J. Math. Anal. Appl. 176 (1) (1993), 138-147.
  8. Lashin, A. Y., On certain subclasses of meromorphic functions associated with certain integral operators, Comput. Math. Appl., 59 (1) (2010), 524-531.
  9. MacGreogor, T. H., Majorization by univalent functions, Duke Math. J. 34 (1967), 95-102.
  10. Nehari, Z., Conformal Mapping, MacGraw-Hill Book Company, New York, Toronto and London, 1955.
Main language of publication
English
Published
2012
Published online
2016-07-25
Exact and natural sciences