PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 66 | 1 |
Tytuł artykułu

Boundedness and compactness of weighted composition operators between weighted Bergman spaces

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We study when a weighted composition operator acting between different weighted Bergman spaces is bounded, resp. compact.
Słowa kluczowe
Rocznik
Tom
66
Numer
1
Opis fizyczny
Daty
wydano
2012
online
2016-07-24
Twórcy
autor
Bibliografia
  • Bonet, J., Domański, P. and Lindstrom, M., Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions, Canad. Math. Bull. 42 (1999), no. 2, 139-148.
  • Bonet, J., Domański, P., Lindstrom, M. and Taskinen, J., Composition operators between weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 64 (1998), no. 1, 101-118.
  • Bonet, J., Friz, M. and Jorda, E., Composition operators between weighted inductive limits of spaces of holomorphic functions, Publ. Math. Debrecen 67 (2005), no. 3-4, 333-348.
  • Contreras, M. D., Hernandez-Dıaz, A. G., Weighted composition operators in weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 69 (2000), no. 1, 41-60.
  • Cowen, C., MacCluer, B., Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995.
  • Cuckovic, Z., Zhao, R., Weighted composition operators on the Bergman space, J. London Math. Soc. (2) 70 (2004), no. 2, 499-511.
  • Duren, P., Schuster, A., Bergman Spaces, Mathematical Surveys and Monographs, 100, American Mathematical Society, Providence, RI, 2004.
  • Hastings, W., A Carleson measure theorem for Bergman spaces, Proc. Amer. Math. Soc. 52 (1975), 237-241.
  • Hedenmalm, H., Korenblum, B. and Zhu, K., Theory of Bergman spaces, Graduate Texts in Mathematics, 199, Springer–Verlag, New York, 2000.
  • Kriete, T., MacCluer, B., Composition operators on large weighted Bergman spaces, Indiana Univ. Math. J. 41 (1992), no. 3, 755-788.
  • Moorhouse, J., Compact differences of composition operators, J. Funct. Anal. 219 (2005), no. 1, 70-92.
  • MacCluer, B., Ohno, S. and Zhao, R., Topological structure of the space of composition operators on \(H^{\infty}\), Integral Equations Operator Theory 40 (2001), no. 4, 481-494.
  • Nieminen, P., Compact differences of composition operators on Bloch and Lipschitz spaces, Comput. Methods Funct. Theory 7 (2007), no. 2, 325-344.
  • Palmberg, N., Weighted composition operators with closed range, Bull. Austral. Math. Soc. 75 (2007), no. 3, 331-354.
  • Shapiro, J. H., Composition Operators and Classical Function Theory, Universitext: Tracts in Mathematics. Springer-Verlag, New York, 1993.
  • Wolf, E., Weighted composition operators between weighted Bergman spaces, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Math. RACSAM 103 (2009), no. 1, 11-15.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ojs-doi-10_17951_a_2012_66_1_75-81
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.