ArticleOriginal scientific text

Title

Mobius invariant Besov spaces on the unit ball of Cn

Authors , ,

Abstract

We give new characterizations of the analytic Besov spaces Bp on the unit ball B of Cn in terms of oscillations and integral means over some Euclidian balls contained in B.

Keywords

Besov spaces, conformal Mobius transformation

Bibliography

  1. Alfors, L., Mobius Transformations in Several Dimensions, Ordway Professorship Lectures in Mathematics. University of Minnesota, School of Mathematics, Minneapolis, Minn., 1981.
  2. Duren, P., Weir, R., The pseudohyperbolic metric and Bergman spaces in the ball, Trans. Amer. Math. Soc. 359 (2007), 63-76.
  3. Hahn, K. T., Youssfi, E. H., Mobius invariant Besov p-spaces and Hankel operators in the Bergman space on the unit ball of Cn, Complex Variables Theory Appl. 17 (1991), 89-104.
  4. Li, S., Wulan, H., Besov space on the unit ball of Cn, Indian J. Math. 48 (2006), no. 2, 177-186.
  5. Li, S., Wulan, H., Zhao, R. and Zhu, K., A characterization of Bergman spaces on the unit ball of Cn, Glasgow Math. J. 51 (2009), 315-330.
  6. Holland, F., Walsh, D., Criteria for membership of Bloch space and its subspace BMOA, Math. Ann. 273 (1986), no. 2, 317-335.
  7. Li, S., Wulan, H. and Zhu, K., A characterization of Bergman spaces on the unit ball of Cn, II, Canadian Math. Bull., to appear.
  8. Nowak, M., Bloch space and Mobius invariant Besov spaces on the unit ball of Cn, Complex Variables Theory Appl. 44 (2001), 1-12.
  9. Ouyang, C., Yang, W. and Zhao, R., Mobius invariant Qp spaces associated with the Green’s function on the unit ball of Cn, Pacific J. Math. 182 (1998), no. 1, 69-99.
  10. Pavlovic, M., A formula for the Bloch norm of a C1-function on the unit ball of Cn,
  11. Czechoslovak Math. J. 58(133) (2008), no. 4, 1039-1043.
  12. Pavlovic, M., On the Holland-Walsh characterization of Bloch functions, Proc. Edinb. Math. Soc. 51 (2008), 439-441.
  13. Ren, G., Tu, C., Bloch space in the unit ball of Cn, Proc. Amer. Math. Soc. 133 (2004), no. 3, 719-726.
  14. Rudin, W., Function Theory in the Unit Ball of Cn, Springer-Verlag, New York, 1980.
  15. Stroethoff, K., The Bloch space and Besov space of analytic functions, Bull. Austral. Math. Soc. 54 (1996), 211-219.
  16. Ullrich, D., Radial limits of M-subharmonic functions, Trans. Amer. Math. Soc. 292 (1985), no. 2, 501-518.
  17. Zhu, K., Spaces of Holomorphic Functions in the Unit Ball, Springer-Verlag, New York, 2005.
Main language of publication
English
Published
2011
Published online
2016-07-27
Exact and natural sciences