ArticleOriginal scientific textMobius invariant Besov spaces on the unit ball of
Title
Mobius invariant Besov spaces on the unit ball of
Authors , ,
Abstract
We give new characterizations of the analytic Besov spaces on the unit ball of in terms of oscillations and integral means over some Euclidian balls contained in .
Keywords
Besov spaces, conformal Mobius transformation
Bibliography
- Alfors, L., Mobius Transformations in Several Dimensions, Ordway Professorship Lectures in Mathematics. University of Minnesota, School of Mathematics, Minneapolis, Minn., 1981.
- Duren, P., Weir, R., The pseudohyperbolic metric and Bergman spaces in the ball, Trans. Amer. Math. Soc. 359 (2007), 63-76.
- Hahn, K. T., Youssfi, E. H., Mobius invariant Besov p-spaces and Hankel operators in the Bergman space on the unit ball of
, Complex Variables Theory Appl. 17 (1991), 89-104. - Li, S., Wulan, H., Besov space on the unit ball of
, Indian J. Math. 48 (2006), no. 2, 177-186. - Li, S., Wulan, H., Zhao, R. and Zhu, K., A characterization of Bergman spaces on the unit ball of
, Glasgow Math. J. 51 (2009), 315-330. - Holland, F., Walsh, D., Criteria for membership of Bloch space and its subspace BMOA, Math. Ann. 273 (1986), no. 2, 317-335.
- Li, S., Wulan, H. and Zhu, K., A characterization of Bergman spaces on the unit ball of
, II, Canadian Math. Bull., to appear. - Nowak, M., Bloch space and Mobius invariant Besov spaces on the unit ball of
, Complex Variables Theory Appl. 44 (2001), 1-12. - Ouyang, C., Yang, W. and Zhao, R., Mobius invariant
spaces associated with the Green’s function on the unit ball of , Pacific J. Math. 182 (1998), no. 1, 69-99. - Pavlovic, M., A formula for the Bloch norm of a
-function on the unit ball of , - Czechoslovak Math. J. 58(133) (2008), no. 4, 1039-1043.
- Pavlovic, M., On the Holland-Walsh characterization of Bloch functions, Proc. Edinb. Math. Soc. 51 (2008), 439-441.
- Ren, G., Tu, C., Bloch space in the unit ball of
, Proc. Amer. Math. Soc. 133 (2004), no. 3, 719-726. - Rudin, W., Function Theory in the Unit Ball of
, Springer-Verlag, New York, 1980. - Stroethoff, K., The Bloch space and Besov space of analytic functions, Bull. Austral. Math. Soc. 54 (1996), 211-219.
- Ullrich, D., Radial limits of M-subharmonic functions, Trans. Amer. Math. Soc. 292 (1985), no. 2, 501-518.
- Zhu, K., Spaces of Holomorphic Functions in the Unit Ball, Springer-Verlag, New York, 2005.