ArticleOriginal scientific text

Title

About a Pólya-Schiffer inequality

Authors ,

Abstract

For simply connected planar domains with the maximal conformal radius 1 it was proven in 1954 by G. Pólya and M. Schiffer that for the eigenvalues λ of the fixed membrane for any n the following inequality holds k=1n1λkk=1n1λk(σ), where λk(σ) are the eigenvalues of the unit disk. The aim of the paper is to give a sharper version of this inequality and for the sum of all reciprocals to derive formulas which allow in some cases to calculate exactly this sum.

Keywords

Membrane eigenvalues, sums of reciprocal eigenvalues

Bibliography

  1. Bandle, C., Isoperimetric Inequalities and Applications, Pitman Publ., London, 1980.
  2. Dittmar, B., Sums of reciprocal eigenvalues of the Laplacian, Math. Nachr. 237 (2002), 45-61.
  3. Dittmar, B., Sums of free membrane eigenvalues, J. Anal. Math. 95 (2005), 323-332.
  4. Dittmar, B., Eigenvalue problems and conformal mapping, R. K¨uhnau (ed.), Handbook of Complex Analysis: Geometric Function Theory. Vol. 2, Elsevier, Amsterdam,
  5. 2005, pp. 669-686.
  6. Dittmar, B., Free membrane eigenvalues, Z. Angew. Math. Phys. 60 (2009), 565-568.
  7. Hantke, M., Summen reziproker Eigenwerte, Dissertation Martin-Luther-Universitat, Halle-Wittenberg, 2006.
  8. Henrot, A., Extremum problems for eigenvalues of elliptic operators, Birkauser, Basel-Boston-Berlin, 2006.
  9. Luttinger, J. M., Generalized isoperimetric inequalities, J. Mathematical Phys. 14 (1973), 586-593, ibid. 14 (1973), 1444-1447, ibid. 14 (1973), 1448-1450.
  10. Pólya, G., Schiffer, M., Convexity of functionals by transplantation, J. Analyse Math. 3 (1954), 245-345.
  11. Pólya, G., Szego, G., Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, Princeton, N. J., 1951.
Main language of publication
English
Published
2011
Published online
2016-07-27
Exact and natural sciences