ArticleOriginal scientific textOn the real
Title
On the real -ranks of points of with respect to a real variety
Authors
Abstract
Let be an integral and non-degenerate -dimensional variety defined over . For any the real -rank is the minimal cardinality of such that . Here we extend to the real case an upper bound for the -rank due to Landsberg and Teitler.
Keywords
Ranks, real variety, structured rank
Bibliography
- Albera, L., Chevalier, P., Comon, P. and Ferreol, A., On the virtual array concept for higher order array processing, IEEE Trans. Signal Process. 53(4) (2005), 1254-1271.
- Arbarello, E., Cornalba, M., Griffiths, P. and Harris, J., Geometry of Algebraic Curves. I, Springer-Verlag, New York, 1985.
- Ballico, E., Ranks of subvarieties of Pn over non-algebraically closed fields, Int. J. Pure Appl. Math. 61(1) (2010), 7-10.
- Ballico, E., Subsets of the variety
computing the -rank of a point of , preprint. - Bernardi, A., Gimigliano, A. and Ida, M., Computing symmetric rank for symmetric tensors, J. Symbolic Comput. 46 (2011), 34-55.
- Bochnak, J., Coste, M. and Roy, F.-M., Real Algebraic Geometry, Translated from the 1987 French original. Revised by the authors. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 36, Springer-Verlag, Berlin, 1998.
- Buczynski, J., Landsberg, J. M., Ranks of tensors and a generalization of secant varieties, arXiv:0909.4262v1 [math.AG].
- Comas, G., Seiguer, M., On the rank of a binary form, arXiv:math.AG/0112311.
- Comon, P., Golub, G., Lim, L.-H. and Mourrain, B., Symmetric tensors and symmetric tensor rank, SIAM J. Matrix Anal. Appl. 30(3) (2008), 1254-1279.
- Hartshorne, R., Algebraic Geometry, Springer-Verlag, Berlin, 1977.
- Landsberg, J. M., Teitler, Z., On the ranks and border ranks of symmetric tensors, Found. Comput. Math. 10 (2010), 339-366.
- Lang, S., Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965.