ArticleOriginal scientific text
Title
Periodic solutions for second-order Hamiltonian systems with a p-Laplacian
Authors ,
Abstract
In this paper, by using the least action principle, Sobolev’s inequality and Wirtinger’s inequality, some existence theorems are obtained for periodic solutions of second-order Hamiltonian systems with a p-Laplacian under subconvex condition, sublinear growth condition and linear growth condition. Our results generalize and improve those in the literature.
Keywords
Second-order Hamiltonian systems, p-Laplacian, periodic solution, Sobolev’s inequality, Wirtinger’s inequality, the least action principle
Bibliography
- Berger, M.S., Schechter, M., On the solvability of semilinear gradient operator equations, Adv. Math. 25 (1977), 97-132.
- Mawhin, J., Semi-coercive monotone variational problems, Acad. Roy. Belg. Bull. Cl. Sci. 73 (1987), 118-130.
- Mawhin, J., Willem, M., Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York, 1989.
- Mawhin, J., Willem, M., Critical points of convex perturbations of some indefinite quadratic forms and semilinear boundary value problems at resonance, Ann. Inst. H. Poincare Anal. Non Lin´eaire 3 (1986), 431-453.
- Rabinowitz, P. H., On subharmonic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 33 (1980), 609-633.
- Rabinowitz, P. H., Minimax methods in critical point theory with applications to differential equations, in: CBMS Regional Conf. Ser. in Math., Vol. 65, American Mathematical Society, Providence, RI, 1986.
- Tang, C. L., Periodic solutions of nonautonomous second order systems with
-quasisubadditive potential, J. Math. Anal. Appl. 189 (1995), 671-675. - Tang, C. L., Periodic solutions of nonautonomous second order systems, J. Math. Anal. Appl. 202 (1996), 465-469.
- Tang, C. L., Periodic solutions of nonautonomous second order systems with sublinear nonlinearity, Proc. Amer. Math. Soc. 126 (1998), 3263-3270.
- Tang, C. L.,Wu, X. P., Periodic solutions for second order systems with not uniformly coercive potential, J. Math. Anal. Appl. 259 (2001), 386-397.
- Willem, M., Oscillations forcees de systemes hamiltoniens, Publ. Math. Fac. Sci. Besancon, Anal. Non Lineaire Annee 1980-1981, Expose No. 4, 16 p. (1981) (French).
- Wu, X., Saddle point characterization and multiplicity of periodic solutions of nonautonomous second order systems, Nonlinear Anal. TMA 58 (2004), 899-907.
- Wu, X. P., Tang, C. L., Periodic solutions of a class of nonautonomous second order systems, J. Math. Anal. Appl. 236 (1999), 227-235.
- Zhao F., Wu, X., Periodic solutions for a class of non-autonomous second order systems, J. Math. Anal. Appl. 296 (2004), 422-434.
- Zhao F., Wu, X., Existence and multiplicity of periodic solution for non-autonomous second-order systems with linear nonlinearity, Nonlinear Anal. 60 (2005), 325-335.
- Xu, B., Tang, C. L., Some existence results on periodic solutions of ordinary
- p-Lapalcian systems, J. Math. Anal. Appl. 333 (2007), 1228-1236.
- Tian, Y., Ge, W., Periodic solutions of non-autonoumous second-order systems with a p-Lapalcian, Nonlinear Anal. TMA 66 (2007), 192-203.
- Zhang, X., Tang, X., Periodic solutions for an ordinary p-Laplacian system, Taiwanese J. Math. (in press).