Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 47 | 2 |

Tytuł artykułu

Robust estimation and its application to a classification problem

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
In the article, a classification problem with two distributed classes is considered. The problem is solving using empirical discriminant functions for Gaussian classifier and estimators for unknown parameters of multivariate normal distribution. The three etimators, maximum likelihood estimator, Kulawik-Zontek estimator and minimum covariance determinant estimator, are compared in two different empirical examples (small size sample and large size sample).
PL
W artykule omówiono problem klasyfikacji dla dwóch klas w przypadku przyjęcia założenia, że rozkłady cech w klasach są wielowymiarowymi rozkładami normalnymi. Problem rozwiązano za pomocą empirycznego klasyfikatora gaussowskiego i wybranych estymatorów nieznanych parametrów wielowymiarowego rozkładu normalnego. Uwzględnione zostały następujące estymatory: MLE (the maximum likelihood estimator - estymator największej wiarogodności), KZE (Kulawik-Zontek estimator) i MCDE (the minimum covariance determinant estimator). Klasyfikatory oparte o MLE i KZE zostały porównane w przypadku przykładu empirycznego (mała próba). W przypadku dużych prób porównane zostały klasyfikatory oparte o trzy wspomniane estymatory.

Rocznik

Tom

47

Numer

2

Daty

wydano
2019
online
2019-08-10

Twórcy

Identyfikatory

Identyfikator YADDA

bwmeta1.element.ojs-doi-10_14708_ma_v47i2_6499