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Abstract In this work we consider a simple mathematical model of radiochemother-
apy which includes a term responsible for radiosensilisation. We focus on �nding
theoretically optimal controls which maximise tumour cure probability for a �nite,
�xed therapeutic horizon. We prove that the optimal controls for both therapies
are of 0-bang type, a result which is not altered by inclusion of the radiosensilisa-
tion term. By means of numerical simulations we show that optimal control o�ers
a moderate increase in survival time over a sequential treatment. We then revisit
in more detail a question of measuring the synergy between the therapies by means
of isobolograms, a common experimental technique for measuring additivity of two
treatments.
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1. Introduction The molecular mechanisms of interactions between
radio- and chemotherapy have been thoroughly studied for decades, mainly
due to the synergy between those two treatments when applied concurrently.
That synergy (or supra-additivity) is attributed to chemotherapeutic ra-
diosensilisation, i.e. the process in which chemotherapeutic agent renders the
cells more susceptible to radiation. [4, 5]

Aside from biological experiments and clinical trials, these two therapies
have been subject to mathematical modelling. Typically the process of ra-
diosensilisation is omitted from those models [1, 2, 3], perhaps due to the
underlying biological mechanism being relatively complex. Although in gen-
eral such models provide insights into optimal therapy planning, the omission
of radiosensilisation may impair their predictive capability.
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In this work we examine a mathematical model which includes a term re-
sponsible for radiosensilisation. We mostly focus on the theoretically optimal
treatment which maximises the Tumour Cure Probability (TCP), but we also
address a more general question of measuring the synergy e�ects in a pair of
treatments. [6].

This work is a continuation of our previous study of optimal control in
models of radiochemotherapy as described in [1] where we considered the
following mathematical model:

Ṅ = −ρN log
N

N∞
− cu(t)N −

(
αv(t) + βv(t)2

)
N, (1)

where N denotes the tumour size, ρ is a proliferation rate, N∞ is the carrying
capacity for the tumour, c is the chemotherapy sensitivity parameter and α, β
are the Linear-Quadratic (LQ) model parameters. The controls in the model
are: u(t), the chemotherapy dose at time t, and v(t), the radiotherapy dose at
time t. In [1] we have shown that if a goal is to minimise the tumour size at
the end of a prescribed treatment horizon, then the optimal controls for both
chemo- and radio-therapy are of 0-bang type. We have also concluded that
introduction of pharmacokinetics and DNA repair does not alter the optimal
controls in a signi�cant manner.

2. Mathematical model One simplifying assumption we adopted in
our previous work was that there was no interaction between the chemo- and
radio-therapy, i.e. the process of radiosensilisation was not taken into account.
The goal of this study is to explore how introducing radiosensilisation a�ects
the optimal controls. As the exact molecular mechanism driving radiosensili-
sation is generally not known, we propose the following (purely behavioural)
modi�cation to our original model (1):

Ṅ = −ρN log
N

N∞
− cu(t)N −

(
αv(t) + βv(t)2

) (
1 + ru(t))

)
N, (2)

where the parameter r ≥ 0 measures the e�ect of synergy between radio- and
chemotherapy.

The goal is to, for a prescribed therapy time T , maximise the Tumour
Cure Probability (TCP) de�ned by J

(
u(·), v(·)

)
= exp(−N(T )) while having

upper bounds on the overall applied doses of chemotherapy and radiation, i.e.
subject to:

∫ T
0 u(t)dt ≤ U and

∫ T
0 v(t)dt ≤ V .

Before we proceed to the analysis of optimal control, let us perform a
variable transformation to simplify the model. We introduce a new variable
x = log N

N∞
so that the model becomes:

ẋ = −ρx− cu(t)−
(
αv(t) + βv2(t)

) (
1 + ru(t)

)
. (3)
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We note that the change of variable was monotonously increasing, hence max-
imising TCP is equivalent to minimising x(T ).

3. Optimal Control. In this section we use Pontryagin Maximum Prin-
ciple to examine the structure of the optimal control. We assume that the con-
trols are bounded by some positive maximum doses umax and vmax. In order
to represent the dose constraints we introduce two auxiliary variables, so that
the full problem becomes as follows: �nd measurable functions u : [0, T ] →
[0, umax] and v : [0, T ]→ [0, vmax] such that x(T ) is minimised subject to

ẋ = −ρx− cu(t)−
(
αv(t) + βv2(t)

) (
1 + ru(t)

)
, x(0) = x0,

ẏ = u(t), y(0) = 0,

ż = v(t), v(0) = 0

(4)

with y(T ) ≤ U and z(T ) ≤ V . We furthermore assume that umaxT > U and
vmaxT > V , as otherwise the problem can be trivially solved by applying full
dose throughout the whole treatment period.

The Hamiltonian of the above system is:

H(t,x,p, u, v) = −p1
(
ρx+ cu+

(
αv + βv2

) (
1 + ru(t)

))
+ p2u+ p3v, (5)

where x = (x, y, z) is the state vector and p = (p1, p2, p3) is the co-state (ad-
joint) vector. The adjoint variables satisfy the following system of di�erential
equations:

ṗ1 = ρp1 p1(T ) = 1,

ṗ2 = 0, p2(T ) (y(T )− U) = 0,

ṗ3 = 0. p3(T ) (z(T )− V ) = 0,

(6)

with p2 ≥ 0 and p3 ≥ 0.
Note that from the �rst equation above we have:

p1(t) = eρ(t−T ) > 0. (7)

We will now determine the structure of the optimal control using the
minimising property of the Hamiltonian. Let U = [0, umax]× [0, vmax] denote
the set of admissible controls. Then for almost all t ∈ [0, T ] it has to be that:

(u(t), v(t)) = argmin
(η,ξ)∈U

H(t,x,p, η, ξ),

= argmin
(η,ξ)∈U

(
− (1 + rη)βp1(t)ξ

2 +
(
p3 − (1 + rη)αp1(t)

)
ξ

+ (p2 − cp1(t))η − ρp1(t)x(t)
)
.

(8)

From the functional form of the Hamiltonian we can deduce the following
proposition:



84 Optimal Control in a Model of Chemotherapy

Proposition 3.1 At any time t, if (η, ξ) ∈ U is the pair minimising the

Hamiltonian, then ξ = 0 or ξ = vmax.

Proof Suppose not, i.e. that for some time t ∈ [0, T ] the minimum was
attained for (η, ξ) ∈ U with ξ ∈ (0, vmax). But for t, x, p and η �xed (i.e. as
a function of ξ), the graph of the Hamiltonian is a parabola with arms facing
downwards as the coe�cient standing next to ξ2 is negative. Therefore

min (H(t,x,p, η, 0), H(t,x,p, η, vmax)) < H(t,x,p, η, ξ),

which is a contradiction. �

We therefore conclude that the optimal control v takes values 0 or vmax
almost everywhere. Having established the above fact, we can formulate the
following proposition regarding the control u:

Proposition 3.2 For almost all times t ∈ [0, T ] the control u is determined

by the sign of the switching function

ϕ(t) = Hu = p2 −
(
c+ r(αv(t) + βv2(t))

)
p1(t).

with

u(t) =

{
0 when ϕ(t) > 0,

umax when ϕ(t) < 0.

Proof If ϕ does not vanish over an interval, the above proposition is a direct
consequence of the minimising property of the Hamiltonian, which is a linear
function of u. But given that we established that the control v may only
take values 0 or vmax, the function ϕ cannot possibly vanish identically on an
interval, thus ending the proof. �

We have therefore established that at any given time t the optimal control
may take one of the four possible pairs of values, namely:(

u(t), v(t)
)
∈
{
(0, 0), (umax, 0), (0, vmax), (umax, vmax)

}
.

Which of these four values should be chosen may be determined directly
from the Hamiltonian. Noting that the term involving the state variable is
irrelevant as it does not depend on the controls, we de�ne:

H00(t) = H(t,0,p, 0, 0) = 0,

H10(t) = H(t,0,p, umax, 0) = p2umax − cumaxp1(t),
H01(t) = H(t,0,p, 0, vmax) = p3vmax − (αvmax + βv2max)p1(t),

H11(t) = H(t,0,p, umax, vmax) = H10 +H01 − rumax(αvmax + βv2max)p1(t).
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To determine the optimal control it is now enough to compute the four values
above and pick the corresponding control. Of course the Hamiltonian depends
on the two multipliers p2 and p3 which we do not knowa priori, but based
on the above we may still draw certain conclusions regarding the structure of
the control.

Proposition 3.3 1. Control (0, 0) may be optimal only at the beginning

of the treatment.

2. Control (umax, 0) cannot switch to control (0, vmax).

3. Control (0, vmax) cannot switch to control (umax, 0).

4. If the control (umax, vmax) becomes optimal, it remains optimal until the

end of the treatment.

Proof 1. Control (0, 0) is optimal only if H10, H01, H11 are all positive.
But since p1 is increasing, they are all decreasing functions of t. There-
fore once one of them becomes negative, it will remain negative for all
subsequent times t and H00 = 0 can never become the minimum of the
four values of the Hamiltonian again.

2. Suppose that (umax, 0) is the optimal control at time τ . Then in partic-
ular H10(τ) < H00(τ) = 0 at time τ and for all subsequent times t ≥ τ .
But then:

H11(t)−H01(t) = H10(t)− ru(αvmax + βv2max)p1(t) < 0

for all t ≥ τ . Therefore H11(t) < H01(t) and H01 will never be the
minimum of the four values of the Hamiltonian.

3. Analogous as 2.

4. Suppose that the control (umax, vmax) is optimal at time τ . Then it has
to be that

H11(τ) < H01(τ), H10(τ), H00(τ).

But we also have at all times t:

Ḣ11 = Ḣ10 + Ḣ01 − rumax(αvmax + βv2max)ρp1(t) ≤ min{Ḣ10, Ḣ01},

so that H11 decreases more rapidly than H10 and H01 and therefore will
remain the most negative of the four values of the Hamiltonian. �

Based on which switches are allowed, we therefore conclude that the only
control which satis�es the Pontryagin Maximum Principle � i.e. the necessary
conditions for optimality � is of the form 0-bang for both controls. As the
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Value Unit Role
N0 3.0× 103 mm3 Initial volume
ρ 7.00× 10−5 (mean), 7.23× 10−3 (std) 1/day Proliferation rate
N∞ 1.735× 104 mm3 Carrying capacity
c 1.4× 10−2 1/ml Chemo sensitivity
α 3.98× 10−2 (mean), 1.68× 10−2 (std) 1/Gy LQ parameter
β α/10 day/Gy2 LQ parameter
r 0, 0.1 (see text) - Radiosensilisation
T 60 day Therapy time
U 105 ml Total chemo dose

umax 15 ml/day Max. chemo dose
V 60 Gy Total radio dose

vmax 3 Gy/day Max. radio dose

Table 1: Parameter values used in the simulations. Note that the proliferation
rate ρ is correlated with the radiosensitivity parameter α with a coe�cient
0.87. Truncated normal distributions were used for ρ and α to ensure that
the parameters remain non-negative.

minimising solution exists due to the way the problem is formulated, the
only one satisfying necessary conditions has to be optimal. Now, a treatment
which does not use the full available dose cannot be optimal (as seen from
terminal conditions in Equation (6)) thus �xing the switching times of the
0-bang switches. We therefore obtain:

Theorem 3.4 The optimal control strategy for the described problem the fol-

lowing:

u(t) =

{
0 if t ∈ [0, T − U

umax
],

umax if t ∈ (T − U
umax

, T ],
v(t) =

{
0 if t ∈ [0, T − V

vmax
],

vmax if t ∈ (T − V
vmax

, T ].

4. Numerical simulations

Now that we have established how the optimal control looks like, we may
examine how it performs in comparison with other possible strategies. Given
that we introduced a radiosensilisation parameter r it is perhaps not surpris-
ing that the concurrent therapy performs better than any sequential one. To
see how much better the performance is, we adapted the methodology used
by Dolbniak et al. [2] where the survival curves are computed based on ran-
domised "virtual" patients. Each patient is characterised by a random set of
parameters ρ, α and β. Following [2] we assumed a 0.87 correlation between
the proliferation rate ρ and the radiosensitivity parameter α. The parame-
ter values used are summarised in Table 1 and were originally estimated by
Geng et al. [3] from survival curves of patients with non-small cell lung carci-
noma. The values of umax, U , vmax and V could not have been used directly
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Figure 1: Survival curves for three treatment strategies. The optimal strategy is
considered in a scenario with and without radiosensilisation.

due to a �xed treatment schedule used in [3], but clinically-realistic values
were assumed.

4.1. Survival curves We computed survival curves for three treatment
strategies, where the treatment was applied only over the �rst T = 60 days.
The radiotherapy-only strategy is chosen as a reference point. We then consid-
ered a sequential strategy (chemotherapy �rst, then break, then radiotherapy)
and the optimal strategy as computed in the previous section. The simula-
tions for the latter were performed with two values of the radiosensilisation
parameter: r = 0 and r = 0.1. Survival time is measured as the time needed
to reach a critical volume of 12000mm3.

4.2. Presentation of the synergy e�ect

Although in this particular case the optimal chemotherapeutic strategy
does not o�er a tremendous improvement in survival time over the sequential
strategy, an interesting question of measuring the e�ects of synergy between
the two drugs emerges. In what follows, we apply the isobologram [6] frame-
work to our mathematical model. Throughout this section we assume that
the maximum instantaneous doses for chemo- and radiotherapies (umax and
vmax) remain constant and we vary the maximum total doses U and V . The
applied treatment strategy is the optimal concurrent one.

The left plot in Figure 2 show the dose-response plots for the two treat-
ments applied separately. The response of a given dose pair (U, V ) is de�ned
to be one minus the fraction of the number of cells after T days and the
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Figure 2: Left: dose-response plots for chemotherapy and radiotherapy. Right:
Isobologram for the desired cytotoxic response of 50%.

number of cells after T days if no treatment is applied. The maximum total
doses were chosen to be Umax = 150 for chemotherapy and Vmax = 100 for
radiotherapy. The right plot shows the so-called isobologram for a desired
cytotoxic response of R = 50%. The dashed curves constitute the boundary
of the �envelope of additivity". They are constructed based on the isolated
response curves (left plot). Let Ru(U) and Rv(V ) denote the responses for a
given total dose of chemotherapy and radiotherapy respectively. The Mode 1
and Mode 2 curves can be de�ned as follows (here with R = 50%):

• Mode 1 (lower) curve is generated under the assumption that chemother-
apy and radiotherapy act independently, i.e.:

MR
1 = {(U, V ) : U = R−1u (R−Rv(V ))}

• Mode 2 (upper) curve is generated under the assumption that chemother-
apy and radiotherapy have an identical mechanism of action, i.e.:

MR
2 = {(U, V ) : U = R−1u (R)−R−1u (Rv(V ))}

We also compute the actual doses (U, V ) needed to achieve the 50% cytotoxic
e�ect as predicted by the model. They are shown in the right plot of Figure 2
as a solid line (r = 0.1) and as a dotted line (r = 0). We note that, as
expected, the r = 0 curve lies within the envelope of additivity (i.e. there
is no synergy between treatments), while the r = 0.1 curve lies below the
envelope, which indicates supra-additivity (synergy) of the two treatments.

5. Conclusions In this study we formulated a model of tumour response
to radiochemotherapeutic treatment which includes the e�ects of radiosensil-
isation. We then showed that the optimal controls in this model are of type
0-bang for both radio- and chemotherapy. In Section 4.1 we showed that
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optimal treatment o�ers a moderate improvement in survival over a sequen-
tial protocol. The improvement is unsurprisingly ampli�ed by introducing
radiosensilisation.

Section 4.2 consists of a brief discussion of how an experimental isobolo-
gram technique of assessing additivity between treatments may be used in the
context of mathematical models. We formally de�ne the �Mode 1" and �Mode
2" curves constituting the so-called envelope o additivity in an isobologram.
We note that this technique may be useful when presenting model outcomes
to experimentalists who may be used to isobolograms. In case of our particu-
lar model the treatment shows supra-additive behaviour (which is clear from
the model construction).

The model we presented in this study treats radiosensilisation in a purely
phenomenological manner and does not attempt to model the underlying
biological mechanisms. Possible extensions of the model would involve subdi-
visions of the tumour population into compartments and analysis of the two
treatments cross-interactions in a more biologically realistic manner.
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Optymalne sterowanie w modelu radiochemioterapii

uwzgl¦dniaj¡cym uwra»liwienie

Piotr Bajger, Krzysztof Fujarewicz, Andrzej �wierniak

Streszczenie W tej pracy rozwa»amy prosty model radiochemioterapii, w którym
uwzgl¦dniamy skªadnik odpowiedzialny za uwra»liwienie komórek na radioterapi¦
indukowane przez podan¡ chemioterapi¦. Skupiamy si¦ na znalezieniu teoretycznie
optymalnych strategii leczenia, które maksymalizuj¡ prawdopodobie«stwo wylecze-
nia guza (tumour cure probability) w zadanym, sko«czonym horyzoncie terapeu-
tycznym. Dowodzimy, »e optymalne sterowania s¡ postaci 0-bang i skªadnik od-
powiedzialny za uwra»liwienie nie ma wpªywu na struktur¦ tych sterowa«. Prze-
prowadzamy symulacje numeryczne by pokaza¢, »e optymalne sterowanie oferuje
nieznaczny wzrost prze»ycia pacjentów w porównaniu do terapii sekwencyjnej. Na-
st¦pnie, by zmierzy¢ synergi¦ pomi¦dzy chemio- i radioterapi¡, korzystamy z metody
izobologramu, techniki stosowanej w eksperymentach do oceny addytywno±ci tych
terapii.

Klasy�kacja tematyczna AMS (2010): 92C50; 49K15.

Sªowa kluczowe: radiochemioterapia, optymalne sterowanie, krzywe prze»ywalno±ci,
uwra»liwienie na radioterapi¦.
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