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Abstract This article combines a real options approach to the optimal timing of out-
sourcing decisions with a linear programming technique for solving one-dimensional
optimal stopping problems. We adopt a partial outsourcing model proposed by
Y. Moon(2010) which assumes profit flows to follow a geometric Brownian motion
and explicitly takes into account the benefits and costs of all efforts which a firm
spends on the project prior to the outsourcing date. The problem of deciding when
to outsource and how much effort to spend is solved when the underlying profit
flows or index processes are modeled by general one-dimensional diffusion. Optimal
outsourcing times are proved to be of threshold type, and sensitivity results regard-
ing market volatility and other quantities are derived. The corresponding optimal
stopping problems are reformulated in terms of infinite dimensional linear programs
and nonlinear optimization problems. These reformulations are exploited to prove
sensitivity results in a novel way. Specific management recommendations are pro-
vided.
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1. Introduction Over the past decades outsourcing has become an inte-
gral part of the globalized economy. Nowadays, to improve their competitive-
ness firms outsource various elements of their in-house operations to subcon-
tractors, e.g. production, development, marketing, distribution and services
(see e.g. [2], [10], or [18]). One obvious incentive for outsourcing operations
- especially to low-wage regions like Asia or Eastern Europe - is to reduce
costs (see [2] and [18]). But as shown in [19], transferring operations to a
subcontractor may not only be motivated by cost reduction. For example, it
is possible that a third party can provide services more efficiently or can offer
specialized technologies; the IT sector provides prominent examples (see [4]).
An additional reason for outsourcing is that by handing over some operations
or part of an operation to subcontractors a firm is able to concentrate on its
core competencies (see [19]).

This particular aspect of an outsourcing project highlights the fact that
outsourcing does not always require transferring a whole operation to an
outside provider. As the authors of [3] emphasize in the context of their
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analysis of call center services, many firms hesitate to hand over critical parts
of their operation to a third party. In a survey investigating IT outsourcing
projects of 50 companies one can see that less than 30% of the companies
outsourced more than 50% of their IT budget (see [4]).

In light of such observations, Shy and Stenbacka studied in [17] a model
where a firm uses a finite number of inputs to produce some final good.
For each input the firm can decide between producing the input by its own
or subcontracting some specialized firm to manufacture the input instead.
Considering cost reduction by outsourcing production lines on the one hand
and additional monitoring costs on the other hand Shy and Stenbacka identify
a profit maximizing fraction of inputs to be outsourced.

A more general model that allows deciding on the proportion to be out-
sourced and assumes this decision to be based on observable but uncertain
market information has been proposed by Alvarez et al. in [2]. In [14], Moon
looks at a similar setting but lifts the decision on the fraction of the operation
to be kept in-house to a strategic level. In the present article we will consider
the case of partial outsourcing when a given proportion α of an operation,
α ∈ [0, 1], will be outsourced. Moreover, the survey results in [4] reveal that
the success of an outsourcing project crucially depends on the effort a firm
invests in the project, and Barthelemy lists four different kinds of [potentially
high] hidden costs caused by such efforts: costs for vendor search, costs for
contracting, costs for effort management and costs for the transition process.
Furthermore, effort management is more than just identifying, evaluating
and controlling costs since, e.g., choosing a qualified vendor and negotiat-
ing proper contracts usually affect the outcome of the project (see [4], [14],
and [19] ). Spending extra time and money on identifying qualified vendors
will typically imply products to be of better quality and/or production costs
to be lower. For this reason, aspects of effort and efficiency will be an integral
part of the partial outsourcing decision model to be analyzed in this paper.

Following [2], [14] and many other references, we will adopt a real options
approach to model a firm’s outsourcing decision. This implies that based on
some relevant market information which is modeled by a one dimensional
stochastic diffusion process a firm tries to maximize its profit by outsourcing
at the first time some optimal market value is achieved. Both, [2] as well as
[14], use geometric Brownian motion (GBM) as the underlying state process
which determines the profit flow of the firm. Although GBM is a popular
model, in the context of outsourcing problems it has certain drawbacks. For
example, if the drift parameter of GBM is larger than the discount rate,
then the optimal value of the outsourcing problem to be studied below will
be infinite. Furthermore, if the diffusion coefficient of GBM is “large” in
comparison to the drift parameter, then all trajectories of future profit flows
will converge to zero. An other disadvantage of the GBM model is revealed
by carefully reviewing the analysis in [14]. To guarantee the existence of
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an optimal outsourcing time a very technical condition on the relationship
between the cost structure of the effort and the parameters of the profit flow
process has to be imposed (see Section 2 for the precise statement). For other
processes such a condition will be unnecessary (see Subsection 4.3). In the
context of outsourcing models, future profit flows are usually expected to
be increasing in the short or medium term, and might hover around some
specific positive value in the longer run. We would also like to analyze the
situation in which profit rates are allowed to take on negative values, at
least for some (short) period of time. To consider both aspects we consider
a model with a general underlying one-dimensional diffusion process and
apply a linear programming method to analyze the case of GBM as well as
other processes, f.i. mean-reverting processes. As mentioned in the previous
paragraph, effort and efficiency shall be taken into account. To do so, we will
adopt the model proposed in [14] and quantify effort by a number θ ­ 0,
not necessarily bounded from above. We will also investigate how an upper
bound on effort, 0 ¬ θ ¬ θ, affects the results. All benefits associated with
effort θ are supposed to be quantified by an expression which is proportional
to θ times the profit flow at the time of outsourcing. A pay-off term of this
form is appropriate if, for example, the firm’s activities justify a discount on
a cost-plus outsourcing contract or a gain-sharing one. All expenses related
to an amount θ are assumed to be captured by a convex power function
which is defined on the non-negative real line. It will turn out that the super-
linearity of this function and the product form of the benefit expression are
two essential features of the model.

In contrast to [2] we follow the reasoning in [14] and assume that the
proportion α of the operation to be outsourced is exogenously given, and
that it is not determined at the operational level but at the strategic level.
In this article we thus consider an outsourcing model where the firm decides
on the effort θ it spends on the project and on the time T when it hands
over part of the operation to an outside provider. The total pay-off of a firm’s
outsourcing decision is the sum of

(i) the expected discounted profit before outsourcing,

(ii) the percentage of the expected value of discounted future profits to be
generated by the operations being outsourced,

(iii) the profit of the operations that will be kept in-house and

(iv) the contribution (the optimal value of a simple maximization problem
over all θ ­ 0) related to the firm’s effort.

Variational inequalities or the principle of “smooth fit” are classical ap-
proaches used to solve optimal stopping problems, which are equivalent to
the optimal timing of the outsourcing problems under consideration. In [14]
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the “smooth fit” technique is further used to derive sensitivity results for the
optimal outsourcing time in the case of GBM. For example, Moon investi-
gates, among other issues, the influence of market uncertainty on the timing
of an outsourcing decision (i.e. the impact that changes of the magnitude
of the diffusion coefficient and other parameters of the model have on the
optimal outsourcing time). In our generalization of the partial outsourcing
model studied in [14] we will consider GBM as a special case. We also rectify
a trivial but crucial typo in [14] and point to some necessary changes of the
original results. Furthermore, we will discuss a linear programming method
and a formulation of a nonlinear optimization problem to derive similar re-
sults for much more general processes than GBM. The characterization of an
optimal stopping time in terms of the arg-max of a specific nonlinear func-
tion offers management the possibility to easily determine the [optimal] time
when outsourcing should take place and makes it possible to derive sensitivity
results of quantities of interest in a novel way. Additional references which
treat optimal stopping problems of one-dimensional homogeneous diffusion
processes using fractional programming reformulations include [5], [8], [13]
and [16].

To illustrate the general method we will analyze the case of Brownian
motion with positive drift and the cases of two mean-reverting processes in
addition to GBM. The first mean-reverting process we will analyze is the
Cox-Ingersoll-Ross model (CIR). The CIR-model is well known in the con-
text of interst rate modeling in financial mathematics (see e.g. [7]) and a
prominent population model in other sciences (see e.g. [12]). The diffusion
term of the CIR-process and its drift term differ from the ones of a GBM-
process. Instead of σx, the diffusion expression is of the form σ

√
x and the

drift term is an affine function of the form µ(1− γx); µ, γ and σ are positive
constants while x represents a profit flow value. The second mean-reverting
process studied in detail is a Geometric-Ornstein-Uhlenbeck process (GOU).
Its drift term is identical to the one of the CIR-model while the diffusion term
σx is the same as in the case of a GBM-model. Compared to more general
diffusions, see Subsection 4.1, these two mean-reverting processes are special
since characteristic quantities can be expressed in terms of analytical expres-
sions involving confluent hyper-geometric functions (see Subsections 4.3 and
4.4). The case of drifted Brownian motion is even easier to analyze because
the characteristics can be expressed in terms of elementary functions; this
is similar to a GBM-model. For general processes, we will have to rely on
numerical computations to determine these characteristics.

This paper is organized as follows. In Section 2 we review an extended
version of the outsourcing model proposed by [14]. Due to a minor but crucial
typo in the derivation of a fundamental formula in [14] some of the general
statements therein need to be reformulated and the expression of the value
function has to be adjusted (see Section 3 for details). In particular, we give
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an example which shows that one of Moon’s sensitivity results generally does
not hold true. In Section 4, we extend results – proved for GBM in Section 3 –
to more general processes such as special classes of mean-reverting processes.
Using a (infinite dimensional) linear programming approach to stopping-time
problems (cf. [11]) we can easily characterize optimal outsourcing decisions for
a fairly large class of time homogeneous regular diffusion processes in terms
of threshold policies. It will be shown that optimal threshold values can be
computed by solving one dimensional non linear optimization problems (see
4.1 for details). In particular, see Theorem 4.2, we prove sensitivity results
for general processes. We illustrate the results by analyzing Brownian motion
with a constant positive drift as a simple example of a profit flow process.
In Subsections 4.2 – 4.4 we apply the general theory of Subsection 4.1 to the
important cases of GBM-, CIR- and GOU-models. Conclusions can be found
in Section 6.

2. Model and Notation

Following [2] and [14], we formulate a firm’s problem of how to optimally
outsource parts of its in-house operation using a real options approach. Since
a firm’s [future] profit is uncertain, we assume the profit flow P = (Pt)t­0,
or an economic index which influences the profit, to be a stochastic process
such as a geometric Brownian Motion. The main difference between the model
presented here and the ones in [2] and [14] is that the profit flow process is a
general 1-dim diffusion process not necessarily geometric Brownian motion.
This enables applications of the model to different kinds of profit or market
structures.

Similar to [2], [14], [17] and [19], we assume that the firm has access to a
market of outside providers/producers. These outside producers or vendors
are either specialized in the activity which shall be outsourced or can operate
with lower costs (labor, materials, tax, etc.) such that the firm can achieve a
marginal cost advantage by outsourcing. This cost advantage is reflected by
the constant factors 0 < aI < aO which are interpreted as follows: given a
model of the index or of the profit flow P it is stipulated that a firm generates
the random future profit flow aIPt by in-house production at time t, and
aOPt by outsourced production. As discussed in the introduction we assume
that α ∈ (0, 1), the proportion of the operation which will be outsourced,
is determined by strategic deliberations and thus is given exogenously. The
value (1− α) specifies the fraction of the operation that is kept in-house.

Let r > 0 denote a discount rate. For any time t ­ 0, the expected future
profit from in-house production conditioned on Pt is given by

πI(P, t) = aIE
[∫ ∞
t

e−r(s−t)Psds Pt

]
;
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analogously, the expected profit from the outsourced operation equals

πO(P, t) = E
[∫ ∞
t

e−r(s−t)aOPsds Pt

]
= aO

πI(t)
aI

.

When outsourcing the proportion α of the operation at a future [random]
time T ­ 0, a firm’s total expected discounted profit generated by in-house
production during the period [0, T ] equals πI(P, 0) − e−rTπI(P, T ). After
outsourcing the fraction α of the operation at time T the firm expects its
average discounted profit on (T,∞) to amount to (1−α)πI(P, T )+απO(P, T ).

As mentioned in the Introduction, outsourcing in-house operations re-
quires certain kinds of investments at the preparation stage. Some of the
costs a firm is facing during such project, i.e. vendor searching costs, transi-
tion preparation costs and organizational costs, can be seen as a firm’s efforts
to increase efficiency of the project. In addition, there will be further costs
as contract processing fees (see [4] and [14]). Following [14], we assume for
the latter costs some fixed amount Kf . The firm’s effort is measured by its
investment I(θ), θ ­ 0, per unit profit flow before outsourcing, which yields
a marginal profit α · θ after outsourcing the fraction α of the former in-house
operation. Thus, investing effort at the preparation stage the firm achieves
a profit surplus of α · θ · PT , where PT denotes the profit flow at the out-
sourcing time T . The cost for the profit surplus are modeled by the convex
function I(θ) = K

q θ
q, K > 0, where the parameter q > 1 is a measure for the

efficiency of the investment (cf. [14]). Thus, for the profits resulting from the
firm’s effort we have α(θPT − I(θ)).

As we have indicated in the Introduction, the optimal random outsourcing
time T will be determined by a threshold value p∗. The value p∗ depends on
a firm’s profit flow up to time T and the expected future profits after T .
Thus, for any T and any p, considering the possible efforts described above,
the first step of the outsourcing analysis requires maximizing (over all θ ­ 0)
the expression

F̄ (P, T, θ) = (1− α)πI(P, T ) + α(πO(P, T ) + θPT − I(θ))−Kf , (1)

where I(θ) = K
q θ

q. Let G(PT , θ) := αPT θ − αKq θ
q denote the difference of

the two terms of F which include θ. Maximizing G with respect to θ will
yield the maximum of (1). To get a formula of the (unique) maximizer θ∗ we
take the derivative of G and set it equal to zero in the case when PT > 0,
and take θ∗ = 0 else. The trivial typo mentioned in the Introduction affected
the derivative of G and the value of the optimal θ (see [14], p. 31). Checking
second order conditions, the correct expression is given by

θ∗ =
(
PT ∨ 0
K

) 1
q−1

. (2)
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Note, contrary to the statement in [14], θ∗ depends on P , and

F (P, T ) := max
θ­0

F̄ (P, T, θ)

= (1− α)πI(P, T ) + απO(P, T )−Kf + α
q − 1
q

K

(
PT ∨ 0
K

) q
q−1

.(3)

In the sequel, for nonnegative processes we will simply write PT instead
of PT ∨ 0. The second step of the outsourcing analysis requires a firm to find
an optimal stopping time T (adapted to the profit/index process) so that the
total expected profit is maximized should the firm outsource at time T and
should it spend effort θ∗.

The value function of the outsourcing problem, when computed at the
initial time t = 0 and for an initial value p0, is given by

V (p0) = sup
T

{
Ep0

[∫ T

0
e−rtaIPtdt + e−rTF (P, T ) · 1l{T<∞}

]}
. (4)

Expression (4) specifies the value function of an optimal stopping problem
to be solved over all stopping times T . In special cases, the function F (P, T )
is independent of the time variable T ; for an example see (9) below.

3. The case of Geometric Brownian Motion
Alvarez et al. as well as Moon (cf. [2] and [14]) assume the profit flow

(Pt)t­0 to be Geometric Brownian Motion (GBM), i.e. (Pt)t­0 satisfies the
stochastic differential equation

dPt = µPtdt+ σPtdWt, P0 = p0, (5)

where (Wt)t­0 is a standard Brownian Motion, µ is the mean-growth rate and
σ specifies how volatile the profit flow evolution will be. In [2] the solution
to (5) is interpreted as a general economic index process. The authors define
profit rates to be transformed values of the index process.

To ensure that the optimal stopping time problem (4) has a non trivial
solution we assume the discount factor r to be larger than the mean growth
rate µ, i.e. r > µ. It is well known that for Geometric Brownian Motion the
profit flow at time t, when compared with its value at time s, s ­ t, satisfies
the identity

Ps = Pte
(µ−σ

2

2 )(s−t)+σ(Ws−Wt). (6)

It follows from (6) that at any time t the expected future profit from
in-house activities can be written as

πI(P, t) = aIE
[∫ ∞
t

e−r(s−t)Psds Pt

]
(6)
= aIPtE

[∫ ∞
t

e(µ−σ
2

2 )(s−t)−r(s−t)+σ(Ws−Wt) Pt

]
= aIPte

t(r−µ)
∫ ∞
t

e−s(r−µ)ds =
aIPt
r − µ

; (7)
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similarily,

πO(P, t) = E
[∫ ∞
t

e−r(s−t)aOPsds Pt

]
=
aOPt
r − µ

. (8)

Hence, for Geometric Brownian Motion the function F (P, T ) only de-
pends on the value of PT . Thus, we will treat F as a real valued function
defined on R+ and assume

F (p) :=
p

r − µ
[aI + α(aO − aI)]−Kf + α

(q − 1)K
q

(
p

K

) q
q−1

. (9)

Due to the functional form of F outsourcing might never be optimal at a
finite time. This possibility occurs whenever we are in a situation character-
ized by the following result.

Lemma 3.1 Let ζ := q
q−1 , and assume the profit flow is a geometric Brown-

ian motion with mean-growth rate µ and volatility σ. If λ,

λ := λ(σ, µ, q, r) :=
σ2

2
ζ(ζ − 1) + ζµ− r,

is positive, then no finite optimal outsourcing time exists and the optimal
value of (4) is infinite.

Proof For any finite stopping time T ,

E
[∫ T

0
aIPtdt+ e−rTF (PT )

]
­ E[e−rTF (PT )]

­ E

−Kf + α
(q − 1)K

q
K
− q
q−1︸ ︷︷ ︸

cF

e−rTP
q
q−1
T


= cFE

[
e−rTP

q
q−1
T

]
−Kf ,

since −Kfe
−rT ­ −Kf and PT

r−µ [aI +α(aO−aI)] ­ 0. Hence, if we can find a

sequence of stopping times τn with P(τn <∞) = 1 while E
[
e−rτnP

q/(q−1)
τn

]
→

∞ if n→∞, then V (P0) =∞, and it is optimal to keep all of the production
in-house. Let ζ := q

q−1 > 1. Identity (6) implies

e−rtP ζt = P ζ0 exp
[
(ζµ− ζσ2/2− r)t+ ζσWt

]
= P ζ0 exp

[
ζσWt −

ζ2σ2

2
t

]
︸ ︷︷ ︸

=:Mt

exp

[(
σ2

2
ζ(ζ − 1) + ζµ− r

)
t

]
.(10)
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Since (Mt)t­0 is a martingale and E[Mt] = M0 = P ζ0 , taking expectations
on both sides of (10) yields a lower bound of V (P0), namely, 0 ¬ t <∞,

V (P0) ­ E
[
e−rtF (Pt)

]
­ cFE[Mt]eλt −Kf . (11)

Thus, whenever the expression λ = λ(σ, µ, q, r) is positive, choosing τn :≡
n implies

E
[∫ τn

0
aIPtdt+ e−rτnF (Pτn)

]
­ E[e−rnF (Pn)] n→∞→ ∞,

and there is no optimal finite stopping time. Therefore, outsourcing will never
take place. �

Note, λ is independent of α, where α equals the fraction of the operation
that will be outsourced. For the remainder of this section we shall assume
that λ(σ, µ, q, r) ¬ 0. Let β denote the solution of the quadratic equation

1
2
σ2β(β − 1) + µβ − r = 0 (12)

which is bigger than 1. The definition of β implies that the property λ ¬ 0
is equivalent to the assumption 1 < ζ < β.

The next two theorems are the main results of this section. Theorem 3.2
provides the correct formula of the value function in the case of GBM. The
difference between formula (15) and the expression given in [14] is due to the
typo referred to above. Theorem 3.3 summarizes the comparative statics; it
is based on Theorem 3.2.

The proofs of the results in Section 3 follow the traditional approach of
constructing the value function V using candidates of V on the continuation
region and candidates of V on the stopping region and piecing them together
at the boundary according to the principle of smooth fit. This way it will
be easy to compare the original proof given by Moon with the proof below.
The case of GBM will be revisited in Subsection 4.2 in the view of the LP-
formulation mentioned in the introduction.

Theorem 3.2 Assume 1 < ζ < β, Kf > 0 and r > µ. Let

c0 :=
Kf

α
, c1 :=

aO − aI
r − µ

(
1− 1

β

)
and cq := K

− 1
q−1

(
1
β
− q − 1

q

)
;

the constant cq is negative while c0, c1 are positive numbers. The optimal
outsourcing time T ∗ is determined by

T ∗ = inf {t ­ 0 Pt ­ p∗} , (13)

where the optimal threshold p∗ is (implicitly) given by the equation

c1p
∗ − c0 = cq(p∗)

q
q−1 . (14)
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As a function of the initial value p0 the optimal expected profit equals

V (p0) =

{
F (p0) if p0 ­ p∗

Apβ0 + aI
r−µp0 if p0 ¬ p∗,

(15)

where F (p0) is defined by (9), A := (p∗)−β
(
F (p∗)− aI

r−µp
∗
)

and β > 1 is
specified by (12).

Proof Following the proof of Theorem 1 in [14] (see also Chapter 5 in [15]
and Section 4 of this article) outsourcing takes place when the profit flow
reaches a threshold p∗. The value function of the optimal stopping problem
satisfies the ordinary differential equation

0 =
1
2
σ2p2V ′′(p) + µpV ′(p)− rV (p) + aIp, (16)

whenever p belongs to (0, p∗). The optimal threshold p∗ is characterized by
the smooth-pasting conditions

V (p∗) =
p∗

r − µ
[aI + α(aO − aI)]−Kf + α

(q − 1)K
q

(
p∗

K

) q
q−1

, (17)

and

V ′(p∗) =
1

r − µ
[aI + α(aO − aI)] + α

(
p∗

K

) 1
q−1

. (18)

A general solution of the differential equation (16) which satisfies (17)
and (18) is given by

V (p) =

{
F (p) if p ­ p∗

Apβ + aIR(p) if p < p∗
,

where β > 1 satisfies (12) and

R(p) := E
[∫ ∞

0
e−rtPtdt P0 = p

]
=

p

r − µ
. (19)

To determine the optimal threshold p∗ and the constant A, we consider
equations (17), (18) and expression (15). These equations imply the non-
linear system

A(p∗)β =
p∗

r − µ
[α(aO − aI)]−Kf + α

(q − 1)K
q

(
p∗

K

) q
q−1

βA(p∗)β−1 = α
aO − aI
r − µ

+ α

(
p∗

K

) 1
q−1

. (20)

Dividing the left-hand side, right-hand side resp., of the first equation of
(20) by the left-hand side, right-hand side resp., of the second equation yields
the identity
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β−1p∗ =
αaO−aIr−µ p∗ −Kf + α (q−1)

q K
− 1
q−1 (p∗)

q
q−1

αaO−aIr−µ + αK
− 1
q−1 (p∗)

1
q−1

.

Thus, an optimal threshold p∗ satisfies the implicit equation(
aO − aI
r − µ

)(
1− 1

β

)
︸ ︷︷ ︸

=:c1

p∗ = K
− 1
q−1

(
1
β
− q − 1

q

)
︸ ︷︷ ︸

=:cq

(p∗)
q
q−1 +

Kf

α︸︷︷︸
=:c0

.

Since β > 1 and Kf > 0, it is obvious that c0 and c1 are positive. The
fact that cq is negative follows from the inequality

β > ζ =
q

q − 1
⇐⇒ cq =

(
1
β
− q − 1

q

)
< 0.

Basic calculus shows that for positive c0, c1 and negative cq there always
exists a unique positive solution p∗ of equation (14); Figure 1 (a) (see Sec-
tion 3) illustrates this fact. �

Window (a) of Figure 1 illustrates that the equation (14) always has a
unique solution. Hence, a unique outsourcing date exists whenever the as-
sumptions of Theorem 3.2 hold. The way the optimal threshold value p∗ de-
pends on various model parameters is described in the next theorem. Window
(b) of Figure 1 shows the dependence of p∗ on q; it provides a counterexample
to the claim in [14] that p∗ is an increasing function of the exponent q.

Theorem 3.3 Let 1 < ζ < β, and assume the profit flow process to be GBM.

1. The optimal threshold p∗ is a decreasing function of α, i.e. the higher
the outsourcing percentage the lower the threshold value.

2. p∗ is a decreasing function of (aO − aI), i.e. the more profitable out-
sourcing is compared to keeping the operation in-house the sooner the
outsourcing decision will be taken.

3. If market volatility σ increases then p∗ increases as well.

4. The trigger value p∗ is increasing in Kf , i.e. higher fixed costs imply
later outsourcing times.

Proof Define the function h(p) := c1p− c0− cqpq/(q−1). Assume the param-
eters σ, µ, α, r, q,K,Kf are fixed and the inequality β > q/(q− 1) holds. The
function h is strictly monotone increasing (in p) and the optimal threshold
p∗ is the unique root of h. Furthermore, h(0) = −c0 is negative. For the rest
of the proof we shall use the notation hα, hσ, etc. to highlight the parameter
that will be varied.
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(a) The two sides of equation (14) as
functions of p.

(b) The optimal threshold p∗ as a func-
tion of q.

Figure 1: Graphical descriptions of equation (14), and of the optimal thresh-
old p∗ as a function of q. The common parameters of both plots are: µ = 0.01,
σ = 0.1, r = 0.06, aO − aI = 0.8, K = 0.3 and α = 0.8. For Window (a), the
fixed cost Kf equals 50 and q equals 2.5; for Window (b), the fixed cost Kf

equals 10.8 and the parameter q runs from 2 to 5 in steps of 0.01.

Ad 1: Whenever α increases the constant part c0 = Kf/α decreases. The
other two constants c1 and cq do not depend on α. Thus, for any pair
ᾱ > α it follows that hᾱ strictly dominates hα, i.e. hᾱ(·) > hα(·). Hence,
p∗(ᾱ) < p∗(α) follows.

Ad 2: Whenever the difference (aI − aO) increases the coefficients c0 and cq
do not change. But the graph of the function haO−aI (·) rotates coun-
terclockwise. Hence, p∗ will move to the left and the firm will outsource
sooner.

Ad 3: It is shown in [14] (see proof of Theorem 3) that ∂β
∂σ < 0. For σ̄ > σ

such that β(σ̄) > q/(q − 1), the fact that β(σ) is strictly monotone
decreasing combined with the definitions of c1 and cq imply the two
inequalities

c1(σ̄) < c1(σ) and cq(σ̄) > cq(σ)

to hold. Hence, hσ̄ > hσ, and with increased market volatility σ̄ the op-
timal outsourcing time is determined by a threshold value p∗(σ̄) which
is larger than p∗(σ).

Ad. 4 Whenever Kf increases the constant part c0 = Kf/α increases too.
The other two constants c1 and cq do not depend on Kf . Thus, for
any pair K̄f > Kf it follows that hKf strictly dominates hK̄f (i.e.
hKf (·) > hK̄f (·)). Hence, p∗(K̄f ) > p∗(Kf ) follows. �



K. Helmes, T. Templin 13

4. General profit flow processes
In this section we shall extend the previous analysis to a larger class of

profit flow processes. The process GBM, if µ > σ2/2, is the prototypical ex-
ample of a random profit flow process for which the average profit flow grows
exponentially over time. To ensure the outsourcing problem is non-trivial
(see Section 3) the restriction r > µ needs to be imposed. Typically, this
condition implies that the average growth rate of a GBM-model needs to be
fairly small. Actually, the fact that µ is less than the discount rate r leads to
the question why anybody would invest in this kind of business in the first
place. This observation is one of our motivations for analyzing the outsourc-
ing problem for processes other than GBM. There are many business sectors
and companies which promise substantial profits and growth over a short
or medium time period but experience profit rates to stabilize and fluctuate
around some level in the long run. The prototypical model which reflects
such behavior is the first mean-reverting process to be studied below. When
analyzing this process and other diffusion processes, we have the opportunity
to present a nonlinear optimization formulation for the outsourcing problem.
This formulation provides an alternative to the smooth pasting technique
used in Section 3. The alternative formulation offers a different way to com-
pute optimal threshold values p∗ and to extend the comparative statics to
more general situations. The approach is a special case of the method pro-
posed in [11] to characterize the value function of general 1-dimensional time
homogeneous stopping problem. First, we will explain this method in a gen-
eral setting. To illustrate the method and point out differences between the
classical smooth pasting technique and the LP-method, we shall revisit the
case of GBM (see Subsection 4.2) before analyzing in greater detail the cases
when the profit processes are assumed to be mean-reverting processes (see
Subsections 4.3 and 4.4).

Window (a) of Figure 2 illustrates the (expected) exponential growth of
GBM trajectories if the condition µ > σ2/2 holds; µ = 0.025, σ = 0.1.
Window (b) shows trajectories of a drifted BM; µ = 0.25, σ = 1. One of the
three trajectories illustrates the possibility that the profit flow can become
negative. Windows (c) and (d) show trajectories of a CIR-model and a GOU-
model; µ = 1, σ = 0.1, 1/γ = 80. The equilibrium point 80 = 1/γ is the same
in both cases. The graphs illustrate the fact that realizations of these two
mean-reverting processes approach 1/γ quite differently and that fluctuations
about 1/γ are very different as well.

4.1. A class of general index processes
In general, we assume that an index process (Pt)t­0 satisfies the stochastic

differential equation

dPt = µ(Pt)dt + σ(Pt)dWt, P0 = p0, (21)

where (Wt)t­0 is a standard Brownian motion and µ, σ are continuous func-
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(a) GBM (b) DBM

(c) CIR (d) GOU

Figure 2: Three sample trajectories of four different profit/index models.

tions on a subset J of the real line. Additionally, we assume that for the
functions µ and σ there exists a unique strong solution P = (Pt)t­0 of (21)
living on J (see [6], III.3). The specific processes analyzed below satisfy the
sufficient conditions for existence (see [6]). To illustrate the techniques pre-
sented in this subsection we will consider, along the general case, the special
case when µ and σ are constant functions, i.e. µ(p) ≡ µ > 0, σ(p) ≡ σ > 0.
In the constant case, we immediately see that the process is from the form

Pt = p0 + µt+ σWt; (22)

the process (22) represents Brownian motion with positive drift (DBM). Let
A denote the generator of a general (time-homogeneous) diffusion process
(Pt)t­0 (i.e. for smooth test functions f),

Af(p) = µ(p)
∂f

∂p
(p) +

σ(p)2

2
∂2f

∂p2 (p). (23)

In Section 3, the objective function of the decision maker was expressed by
(4). There are, however, different yet equivalent ways to express the objective
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function of the outsourcing problem (see [2]). To this end, let R(p) denote
the expected net present value of future profits when the flow starts in p. If
p ∈ J , let

R(p) := Ep
[∫ ∞

0
e−rt Pt dt

]
. (24)

Thus, the net present value of a company which will never outsource
equals aI · R(p). The function R is the image of the resolvent operator Rr
applied to the identity function p 7→ p (see [6], I.7). The family of operators
Rr, r > 0, is intimately related to the operator A. In the case of DBM it
immediately follows from (22) that R equals RDBM ,

RDBM (p) :=
p

r
+
µ

r2 . (25)

Throughout, the following conditions will be imposed on processes P :

Assumption 1

(i) The process P is regular (see [6], II.3), i.e. for any two values p, p̃ ∈ J ,
where p lies in the interior of J , the probability of hitting p̃, when
starting in p, is positive.

(ii) ∀ p ∈ R : R(p) is well defined and finite.

(iii) R(p) is a monotone increasing function.

The specific examples considered in Subsections 4.2 – 4.4 as well as DBM-
models all satisfy Assumption 1. It follows from the definition of a resol-
vent operator that for GBM (cf. (7) – (9)) but also for more general time-
homogeneous 1-dimensional diffusions the objective function of the outsourc-
ing problem can be written as

Ep0
[
e−rτg(Pτ )1l{τ<∞}

]
+ aI · R(p0), (26)

where

g(p) := α
q − 1
q

K

(
p ∨ 0
K

) q
q−1

+ α(a0 − aI)R(p)−Kf (27)

denotes the payoff function. In the case of a GBM-model the function g equals
F (p) − aIR(p), where F was defined by (9). Assumption 1 (ii) implies that
the function g (see (27)) is always a monotone increasing function.

For most processes P the function R satisfies the ordinary differential
equation

AR(p)− rR(p) = −p, (28)

together with specific growth conditions. This observation can be exploited
to compute R for many functions µ(p) and σ(p). It is easy to verify that the
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function RDBM , cf. (25), satisfies the ODE (28) (see (23) for a definition of
A) when µ(p) ≡ µ > 0, σ(p) ≡ σ > 0 and p ∈ J = R.

To reformulate the optimal stopping problem as a 1-dimensional opti-
mization problem we have to consider a further differential equation. From
now on we shall assume that any generator A is such that there is a non
negative increasing solution ψ of the homogeneous ODE

Aψ(p)− rψ(p) = 0. (29)

In the case of the DBM-model such a solution is of the form ψ(p) =
const·eδp, const > 0, where δ is the positive solution to the quadratic equation

σ2

2
δ2 + µδ − r = 0.

It follows from [11] that for the stopping time problem (4), and the more
general problems to be considered in this section, an optimal outsourcing
date is a hitting time τp (i.e. for a threshold p),

τp := inf{t |Pt = p, whereP0 = p0}.

It is well known that for regular diffusions, and whenever p0 ¬ p,

E
[
e−rτpg(Xτp)1l{τp<∞}

]
= g(p)E

[
e−rτp1l{τp<∞}

]
= g(p)E

[
e−rτp

]
= g(p)

ψ(p0)
ψ(p)

.

(30)
For drifted Brownian motion, (30) yields

E
[
e−rτpg(Xτp)1l{τp<∞}

]
= g(p) · e−δ(p−p0).

Since g is monotone increasing, an optimal outsourcing time will be a
hitting time of the form τp, where p > p0 or p = p0. Hence (see also [11]) we
shall consider the nonlinear optimization problem

max
p­p0

{
g(p)
ψ(p)

}
. (31)

Let p∗ be a solution of (31). In general, it is not at all clear that such
a solution p∗ exists. In the case of GBM the condition β > ζ ensures the
existence of such a value. In the case of DBM – no matter what the values of
the parameters are – there is always a solution to this maximization problem.
The proof of this claim is very similar to the proof of the claim in the case of
GBM (see Subsection 4.2). The following result is an extension of Theorem
3.2.
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Theorem 4.1 Let (Pt)t­0 be a general index process (or a profit flow process)
which satisfies (21). Assume that the non-linear optimization problem (31)
has at least one solution p∗ ∈ R. Let

p∗ = argmaxp­p0

{
g(p)
ψ(p)

}
be the smallest maximizer of (31). The optimal policy recommends outsourc-
ing at the first moment when the process hits the (optimal) threshold p∗. For
any initial value p0 ¬ p∗, the maximal (expected) profit reaped by the out-
sourcing company equals

ψ(p0)
g(p∗)
ψ(p∗)

+ aIR(p0); (32)

more generally, the value function V is given by

V (p0) =

{
ψ(p0) g(p

∗)
ψ(p∗) + aIR(p0) , p0 < p∗

g(p0) + aIR(p0) , p0 ­ p∗.
(33)

Theorem 3.3 is a collection of sensitivity results for the case when the
homogeneous diffusion process is GBM (see [14]). To prove similar results
for general diffusion processes, we need to impose conditions on ψ, R and
g. If such conditions hold (see below) such sensitivity results can be proved
for general processes. Checking these sufficient conditions is typically a non-
trivial matter (see the proofs of Lemmas 4.3, 4.4 and 4.5).

Theorem 4.2 Let (Pt)t­0 denote a general index process (or a profit flow
process) which satisfies (21) and all other conditions specified above. Assume
that for any optimization problem (31) considered in the sequel a maximizer
exists.

1. The optimal threshold p∗ is a decreasing function of α (i.e. the higher
the outsourcing percentage is going to be the lower the threshold value
will become). Furthermore, p∗ is an increasing function of the fixed cost
Kf .

2. Let R be such that the function p 7→ g(p)/R(p) is monotone increasing.
The optimal threshold p∗ is a decreasing function of ∆ = aO − aI .

3. Let two processes with identical drift functions µ(p) and different dif-
fusion functions σi(p) be given, i = 1, 2. Let σ1(p) < σ2(p), p ∈ R,
and ψ1, ψ2 denote the corresponding ψ functions. If the quotient ψ1/ψ2

is monotone increasing, and if the function R is independent of the
diffusion function σ(p) then p∗1 < p∗2, where p∗i is optimal threshold
corresponding to the model characterized by σi, i = 1, 2.



18

ProofAd 1: Let 0 ¬ α1 < α2 ¬ 1; introduce the constant h := Kf/α1 −
Kf/α2 > 0. Define functions

ĝi(p) :=
gi(p)
αi

=
K

ζ

(
p

K

)ζ
+ (aO − aI)R(p)− Kf

αi
, i = 1, 2.

For each αi, the problem of maximizing gi
ψ can be rewritten as

max
p­p0

gi(p)
ψ(p)

= αi max
p­p0

ĝi(p)
ψ(p)

.

By definition, ĝ2 = ĝ1 + h. Let p1 and p2 be the optimal profit values
associated with the parameters α1 and α2, i.e. ĝi(pi)/ψ(pi) ­ ĝi(p)/ψ(p)
for all p ­ p0. It follows that either g1(p2) > 0 or g2(p1) > 0. Without
loss of generality we assume g1(p2) > 0. By construction,

ĝ2(p2)
ψ(p2)

=
ĝ1(p2) + h

ψ(p2)
=
ĝ1(p2)
ψ(p2)

[
1 +

h

ĝ1(p2)

]
(34)

and
ĝ2(p2)
ψ(p2)

­ ĝ2(p1)
ψ(p1)

=
ĝ1(p1)
ψ(p1)

[
1 +

h

ĝ1(p1)

]
. (35)

By taking the logarithm on both sides of equation (34) and of inequality
(35), the transformed expressions imply the inequality

log
(
ĝ1(p1)
ψ(p1)

)
− log

(
ĝ1(p2)
ψ(p2)

)
¬ log

(
1 +

h

ĝ1(p2)

)
− log

(
1 +

h

ĝ1(p1)

)
.

(36)

Since the left hand side of (36) is non negative the inequality ĝ1(p1) ­
ĝ1(p2) follows. If R is monotone increasing then ĝ1 is strictly increasing
and we obtain p1 > p2. The sensitivity of p∗(Kf ) on variations of Kf

can be shown in the same manner.

Ad 2: Let ∆ denote the difference aO − aI ; assume ∆2 > ∆1. For i = 1, 2,
define the function gi as the payoff function associated the parameter
∆i, i.e.

gi(p) :=
1
ζ
K

(
α

K

)ζ
pζ −Kf + α∆iR(p).

We can express g2 in terms of g1 and some function h, viz.

g2(p) = g1(p) + α(∆2 −∆1)R(p)︸ ︷︷ ︸
=:h(p)

. (37)

The maximizers p1 and p2, the first one associated with the parameter
∆1 and the second one determined by ∆2, satisfy gi(pi)

ψ(pi)
= maxp

gi(p)
ψ(p) .
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Similar to the first part of the proof, we derive inequalities similar to
(34), (35) and (36) but we replace the constant h by the function h(p)
(cf. (37)). Hence, we obtain the inequality h(p2)/g1(p2) ­ h(p1)/g1(p1),
which is equivalent to the inequality

g1(p2)
R(p2)

¬ g1(p1)
R(p1)

.

Since the function p 7→ g1(p)/R(p) is assumed to be monotone increas-
ing, the inequality p2 ¬ p1 follows.

Ad 3: Let pi denote the optimal threshold corresponding to σi. For any p ­ p0,

ψi(pi)
g(pi)

¬ ψi(p)
g(p)

.

Let h(p) := (ψ1−ψ2)(p). The reciprocal ψi/g satisfies the following two
conditions:

ψ1(p1)
g(p1)

=
ψ2(p1) + h(p1)

g(p1)
=
ψ2(p1)
g(p1)

[
1 +

h(p1)
ψ2(p1)

]
and

ψ1(p1)
g(p1)

¬ ψ1(p2)
g(p2)

=
ψ2(p2)
g(p2)

[
1 +

h(p2)
ψ2(p2)

]
.

Thus,
ψ2

g
(p1) · g

ψ2
(p2) ¬

1 + h
ψ2

(p2)

1 + h
ψ2

(p2)
. (38)

By taking the logarithm on both sides of (38) and using the property
that p2 minimizes the reciprocal ψ2/g, we obtain

ψ1

ψ2
(p1)− 1 =

h

ψ2
(p1) ¬ h

ψ2
(p2) =

ψ1

ψ2
(p2)− 1.

Since ψ1/ψ2 is assumed to be monotone increasing, the inequality p1 ¬
p2 follows. �

In the following subsections we will exploit the last two theorems and
compute and analyze the optimal threshold values and the value functions if
P = (Pt)t is a GBM-, a CIR- or a GOU-process.

Remark. For a GBM-model, a DBM-one, and for both mean-reverting
models (see below) the expected net present value of future profits R satisfies
the first two conditions of the last theorem. The conditions required in part 3
of Theorem 4.2 are satisfied for a GBM-, DBM- and one of the mean-reverting
processes considered below (see Subsections 4.2, 4.3 and 4.4). In the case of a
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GBM-model, the diffusion function is of the form σ(p) = σ̄ · p. If we consider
two GBM-processes with diffusions σi(p) := σ̄i · p, i = 1, 2, σ̄1 < σ̄2, then
part 3 of Theorem 4.2 can be applied. Obviously, the sufficient condition of
part 3 of Theorem 4.2 is satisfied in the case of a DBM-model.

4.2. GBM revisited
It is well known that the operator

Af(p) :=
σ2

2
p2f ′′(p) + µpf ′(p), (39)

acting on smooth functions f , is the generator of geometric Brownian motion.
In the case of a GBM-model, the net present value function R is RGBM (p) =
p

r−µ . For simplicity, in Sections 4.2 – 4.4 we shall always call the process P
a profit flow process. The function RGBM satisfies the ordinary differential
equation (ODE)

ARGBM (p)− rRGBM (p) = −p.

The payoff function g, cf. (27), equals

gGBM (p) = α
q − 1
q

K

(
p

K

) q
q−1

+ α(a0 − aI)
p

r − µ
−Kf . (40)

Non negative increasing solutions of the homogeneous ODE

AψGBM (p)− rψGBM (p) = 0

are given by ψGBM (p) = const · pβ, const > 0, where β is defined by (12).
Without loss of generality (cf. (30)) let const = 1. If the condition β >
ζ = q

q−1 holds (c.f. Theorem 3.2 in Section 3) elementary calculus shows the
existence of the optimal threshold level p∗ > 0, which is the solution of the
nonlinear optimization problem

max
p­p0

{
gGBM (p)
ψGBM (p)

}
. (41)

The following arguments justify this claim: If β > q
q−1 , then ψGBM (p)

dominates gGBM (p) for large values of p. Since Kf > 0, the function gGBM (p)
is negative if p is close to 0. Furthermore, gGBM (p) is positive for large values
of p. Therefore, it suffices to analyze the maximization problem (41) on a
compact subset of (0,∞).

Let p∗ := argmax
{
gGBM
ψGBM

}
, and let p0 denote the initial value of the

profit flow. It follows from Theorem 4.1 that the value function is given by
the expression

VGBM (p0) =


(
p0
p∗

)β
gGBM (p∗) + aI

p0
r−µ , p0 < p∗

gGBM (p0) + aI
p0
r−µ , p0 ­ p∗ .

(42)
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(a) (b)

Figure 3: Panel (a) shows both pieces of VGBM as functions of p. The solid
line represents p 7→ const · pβ + aIp/(r − µ); const = gGBM (p∗)/(p∗)β. The
dashed line depicts p 7→ gGBM (p) + aIp/(r − µ). Panel (b) shows the value
function VGBM (p). The parameters are: r = 0.3, α = 0.4, µ = 0.03, σ =
0.1, aI = 1, aO = 1.5, Kf = 10, K = 0.3 and q = 1.4.

This is the result stated in Theorem 3.2. In Section 3, however, the value
function was derived using the smooth pasting technique.

Figure 4.2 (a) shows the graphs of both components of VGBM as functions
of p on the interval [0 , 2.5] (see (42)); the interval includes p∗ = 1.9324. To
the left of p∗ the solid line represents the value function: V is the sum of an
affine function plus a power function with exponent β. To the right of p∗ the
value function equals the sum of an affine function and a power function with
exponent q/(q − 1). Panel (b) of Figure 4.2 shows the plot of VGBM . While
the dashed line is negative for a while, gGBM (0) = −Kf , the value function
VGBM is always non-negative.

4.3. The Cox-Ingersoll-Ross process
Let µ, γ and σ be positive parameters, and let p0 > 0 denote the initial

value of the mean-reverting process (Pt)t defined by the stochastic differential
equation

dPt = µ(1− γPt)dt+ σ
√
Pt dWt, P0 = p0. (43)

The value 1/γ represents a long term profit flow level of a firm. Whenever
p0 < 1/γ, following an initial (random) growth period the firm’s profit flow
will fluctuate around 1/γ. The size of the fluctuations depend on σ, while
µ determines (i) how quickly rates grow towards 1/γ and (ii) how strongly
deviating trajectories are pulled back towards the long term equilibrium level.
Figure 2 (b) shows sample paths of this mean-reverting process.

The operator

Af(p) =
σ2

2
pf ′′(p) + µ(1− γp)f ′(p) (44)
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is associated with the stochastic differential equation (43).
When (Pt)t is a CIR-process defined by (43) the function RCIR(p) :=

R(p) (see (24)) is given by

RCIR(p) =
1

r + γµ

(
p+

µ

r

)
.

Let ψCIR(p) denote the non negative increasing solution of the homoge-
neous ODE

AψCIR(p)− rψCIR(p) = 0,

and ψCIR(1) = 1. It is well known that the function ψCIR(p) can be expressed
by the Kummer M-function

KM (a, b, z) = 1 +
az

b
+

(a)2

(b)2

z2

2!
+

(a)3

(b)3

z3

3!
+ ...,

where (c)n := c(c + 1) · ... · (c + n − 1), (c)0 := 1, denotes the n-th rising
factorial of a real number c (see [1]). Given parameters µ, σ, γ and r, the
value ψCIR(p) can be expressed as

ψCIR(p) = KM
(
r

γµ
,
2µ
σ2 ,

2γµ
σ2 p

)
.

This representation follows from the fact that KM (a, b, z) solves the dif-
ferential equation

zf ′′(z) + (b− z)f ′(z)− af(z) = 0. (45)

Hence, the optimization problem (31) becomes

max
p­p0

{
gCIR(p)
ψCIR(p)

}
, (46)

where

gCIR(p) = α
q − 1
q

K

(
p

K

) q
q−1
−Kf + α

aO − aI
r + γµ

(
p+

µ

r

)
. (47)

If a firm’s future profit flow is faithfully modeled by a CIR-process then
the next result reveals that waiting is optimal whenever an outsourcing de-
cision involves a non-zero fixed cost Kf .

Lemma 4.3 Let Kf > 0. For any p0 ­ 0, there exists a (smallest) maximizer
p∗, 0 < p∗ <∞, of (46), i.e.

gCIR(p∗)
ψCIR(p∗)

= max
p­p0

{
gCIR(p)
ψCIR(p)

}
.
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Proof For large values of p the function gCIR is positive. It follows from the
representation of ψCIR as an infinite power series with positive coefficients
that ψCIR dominates gCIR when p tends to infinity. Hence,

lim
p→∞

gCIR(p)
ψCIR(p)

= +0.

In contrast to a GBM-model, we do not necessarily know that gCIR is
negative close to 0; the constant part of gCIR (see (47)) does not have to be
negative. To see that gCIR/ψCIR attains a positive maximum in the interior
of a compact subset of (0,∞), we will prove that the derivative (g/ψ)′ is
positive at 0. By definition,

g(p) = α
q − 1
q

K
− 1
q−1︸ ︷︷ ︸

=:cq

p
q
q−1 + α

aO − aI
r + µγ︸ ︷︷ ︸
=:c1

p + α
aO − aI
r + µγ

µ

r
−Kf︸ ︷︷ ︸

=:c0

,

and
ψ(p) = KM (a, b, c · p),

where a = r/(γµ), b = 2µ/(σ2) and c = 2γµ/(σ2). Thus, g(0) = c0, g′(0) = c1

and ψ(0) = 1. Let bi = 2µ/(σ2
i ) and zi = biγp, i = 1, 2. Since

z
dKM

dz
(z) = a(KM (a+ 1, b, z)−KM (a, b, z)),

cf. [1], and since ψ is continuously differentiable we get

p
dψi
dp

(p) = zi
dKM

dz
(zi) = a(KM (a+ 1, bi, zi)−KM (a, bi, zi)). (48)

For positive p,

ψ′(p) =
a

p
[KM (a+ 1, b, c · p)−KM (a, b, c · p)]

= ac

[
1
b

+
∞∑
n=1

(c · p)n

(b)n+1 · (n+ 1)!
((a+ 1)n+1 − (a)n+1)

]
p→0−→ ac

b
.

Thus, ψ′(0) = r
µ , and

g′(0)ψ(0)− g(0)ψ′(0) = c1 · 1− c0 ·
r

µ
= Kf ·

r

µ

is positive. �
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The associated value function is given by the expression

VCIR(p0) =


ψCIR(p0) gCIR(p∗)

ψCIR(p∗) + aI
p0+

µ
r

r+γµ , p0 < p∗

gCIR(p0) + aI
p0+

µ
r

r+γµ , p0 ­ p∗ .
(49)

Theorem 4.2 can be employed when sensitivity results of CIR-models
are derived. To this end, we shall verify that the sufficient conditions as-
sumed in Theorem 4.2 are satisfied. Lemma 4.3 ensures optimal thresh-
olds to exist whenever Kf > 0. Obviously, gCIR(p) is a monotone increas-
ing function (see (47)). Hence, the optimal threshold decreases should the
fixed proportion α increases (i.e. outsourcing takes place sooner). To see that
gCIR/ψCIR is monotone increasing (in p) (cf. part 2 of Theorem 4.2) the
function g′CIRRCIR − gCIRR′CIR has to be non-negative. For better reading,
we shall drop the subscript CIR for the next couple of lines. By definition,

g′(p)R(p)− g(p)R(p)′ = αK
− 1
q−1 p

1
q−1

[
R(p)− q − 1

q
pR′(p)

]
− KfR′(p)

=
α

r + γµ

(
p

K

) 1
q−1

[
1
q
p+

µ

r

]
+

Kf

r + γµ
;

this expression is positive for all p ­ 0. Hence, should the difference (aO−aI)
of the profit contribution increases the optimal threshold decreases. Finally,
the following lemma ensures the sufficient condition of part 3 of Theorem 4.2
holds.

Lemma 4.4 Let positive parameters µ, γ and r be given. Let 0 < σ1 < σ2,
and consider the ψ-functions of both CIR-models, i.e.

ψi(p) = KM

(
r

γµ
,
2µ
σ2
i

,
2µγ
σ2
i

p

)
, i = 1, 2.

The quotient ψ1
ψ2

is a strictly monotone increasing function on (0,∞).

Proof Let a := r/(γµ), bi := 2µ/σ2
i and zi := biγp, i = 1, 2. Thus, ψi(p) =

KM (a, bi, zi). To show that the derivative of ψ1/ψ2 is monotone increasing
we shall verify that

f(p) := p · (ψ′1(p)ψ2(p)− ψ1(p)ψ′2(p)) (50)

is a positive function on (0,∞). Using (48) and simplifying terms we get

f(p)
p

= KM (a+1, b1, z1)·KM (a, b2, z2)−KM (a, b1, z1)·KM (a+1, b2, z2). (51)
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Since the Kummer function KM (a, b, z) can be represented by the infinite
series

KM (a, b, z) =
∞∑
k=0

(a)k
(b)k

zk

k!
,

the two products in (51) are Cauchy products. For i, j ∈ {1, 2}, i 6= j, we
express these products as

KM (a+ 1, bi, zi) ·KM (a, bj , zj) =
∞∑
n=0

c(i,j)
n .

By definition,

c(1,2)
n =

n∑
k=0

(a+ 1)k
(b1)k

zk1
k!
· (a)n−k
(b2)n−k

zn−k2

(n− k)!
=
zn2
n!

n∑
k=0

(
n
k

)
(a+ 1)k(a)n−k
(b1)k(b2)n−k

(
z1

z2

)k
and

c(2,1)
n =

n∑
k=0

(a)k
(b1)k

zk1
k!
·(a+ 1)n−k

(b2)n−k

zn−k2

(n− k)!
=
zn2
n!

n∑
k=0

(
n
k

)
(a)k(a+ 1)n−k
(b1)k(b2)n−k

(
z1

z2

)k
.

Let y := z1/z2 = σ2
2/σ

2
1; note, y is positive. To prove f(p) is positive if

p > 0, it is sufficient to show that for all n ∈ N,

n!
z2
n

·
(
c(1,2)
n − c(2,1)

n

)
=

n∑
k=0

(a+ 1)k(a)n−k − (a)k(a+ 1)n−k
(b1)k(b2)n−k

(
n
k

)
yk︸ ︷︷ ︸

=:dk,n

> 0.

(52)
The coefficients (a)k satisfy the recursions (a+1)k = (a)k a+k

a , k > 0, and
(a+ 1)n−l = (a)n−l a+n−l

a , 0 < l < n. Thus, (see (52))

d0,n = −
(a)n

(
a+n
a − 1

)
(b2)n

= −n(a)n
a

1
(b2)n

,

dn,n =
(a)n

(
a+n
a − 1

)
(b1)n

yn =
n(a)n
a

yn

(b1)n
,

and

dk,n =
2k − n
a

(a)k(a)n−k
(b1)k(b2)n−k

(
n
k

)
yk.

Next, we will compare dk with dn−k. If n is odd, the index k runs from 0
to n−1

2 ; if n is even, k runs from 0 to n
2 − 1. Note, dn/2 = 0 if n is even. For

k = 0 and σ1 < σ2, we have

yn

(b1)n
− 1

(b2)n
= σ2n

2

[
1

σ2n
1 (b1)n

− 1
σ2n

2 (b2)n

]
=

σ2n
2

2µ

[
1

(2µ+ σ2
1) · ... · (2µ+ (n− 1)σ2

1)

− 1
(2µ+ σ2

2) · ... · (2µ+ (n− 1)σ2
2)

]
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is positive. Hence, d0,n + dn,n > 0. To prove the sum dk + dn−k to be positive
if k > 0, it is enough to show that

yn−k

(b1)n−k(b2)k
>

yk

(b1)k(b2)n−k
⇔ (b1)k

(b1)n−k

σ2k
1

σ
2(n−k)
1

>
(b2)k

(b2)n−k

σ2k
2

σ
2(n−k)
2

. (53)

We know

(bi)kσ2k
i = (2µ+ σ2

i )(2µ+ 2σ2
i ) · ... · (2µ+ (k − 1)σ2

i )

and

(bi)n−kσ
2(n−k)
i = (2µ+ σ2

i )(2µ+ 2σ2
i ) · ... · (2µ+ (n− k − 1)σ2

i ).

Thus, (53) is equivalent to

1
(2µ+ kσ2

1) · ... · (2µ+ (n− k − 1)σ2
1)

>
1

(2µ+ kσ2
2) · ... · (2µ+ (n− k − 1)σ2

2)
,

and this strict inequality holds since σ1 < σ2. Hence, dk + dn−k is positive
for all k = 0, ..., n−1

2 , or k = 0, ..., n2 − 1. The positivity of the sum of any two
of these terms implies the expression (52) to be positive. �

4.4. The Geometric-Ornstein-Uhlenbeck process
In this subsection, we are going to analyze a second mean-reverting pro-

cess – the GOU-process – in detail. We shall demonstrate that for a GOU-
process not all sufficient conditions of Theorem 4.2 hold.

A GOU-process satisfies the stochastic differential equation

dPt = µ(1− γPt)dt + σPtdWt, P0 = p0, (54)

(cf. [9]). The expected flow of a CIR-process and the expected flow of a
GOU-process both converge to 1/γ if t tends to infinity. The two processes,
however, fluctuate around 1/γ quite differently, as figure 2 (c) and figure 2 (d)
illustrate. The difference in the size of the fluctuations is due to the fact that
for large values of Pt the diffusion expression in the case of a GOU-model,
σPt, is much larger than the diffusion expression of a CIR-model, σ

√
Pt.

The generator of a GOU-process is given by

Af(p) =
1
2
σ2p2f ′′(p) + µ(1− γp)f ′(p). (55)

The function R (see (24)) is the same as the R-function of a CIR-model
(i.e. RGOU (p) = 1

r+γµ

(
p+ µ

r

)
). Let a, b and c be defined as

c :=
√
σ4 + (4µγ + 8r)σ2 + 4µ2γ2, a :=

c− σ2 − 2µγ
2σ2 and b := 1+

c

σ2 ;
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note, (b− a− 1) > 1. Simple analysis shows that

ψGOU (p) := p−a ·KU

(
a, b,

2µ
σ2p

)
is a positive solution to the differential equation (29), where KU denotes the
Kummer-U function

KU (a, b, z) =
π

sin(πb)

[
KM (a, b, z)

Γ(b)Γ(1 + a− b)
+ z1−bKM (1 + a− b, 2− b, z)

Γ(a)Γ(2− b)

]
.

The Kummer-U function is a second solution to the differential equation
(45) (cf. [1]), which is linearly independent of KM . The R functions of both
models are the same. Thus, the g-function of a GOU-model coincides with
the g-function of a CIR-model, should the parameters of both models be
identical (see (27) and (47)). The optimization problem (31) becomes

max
p­p0

{
gGOU (p)
ψGOU (p)

}
. (56)

Whenever Kf > 0, the optimization problem (46) has an optimal solu-
tion p∗. In the case of a GOU-process, an additional condition needs to be
imposed to guarantee that the outsourcing problem is a non-trivial one; cf.
the condition q/(q − 1) < β in the case of a GBM-model.

Lemma 4.5 Let Kf > 0, and assume q
q−1 < (b−a−1). For any p0 ­ 0 there

exists a (smallest) maximizer p∗ of (56), 0 < p∗ <∞, i.e.

gGOU (p∗)
ψGOU (p∗)

= max
p­p0

{
gGOU (p)
ψGOU (p)

}
.

Proof Let a, b, c as above. In the case of a GOU-model the ψ function is
given by

ψGOU (p) := p−a ·KU

(
a, b,

2µ
σ2p

)
,

while the g function equals

gGOU (p) = α
q − 1
q

K
− 1
q−1︸ ︷︷ ︸

=:cq

p
q
q−1 + α

aO − aI
r + µγ︸ ︷︷ ︸
=:c1

p + α
aO − aI
r + µγ

µ

r
−Kf︸ ︷︷ ︸

=:c0

. (57)

For the rest of the proof we will drop the subscript GOU. The Kummer-U
function KU can be expressed in terms of the Kummer-M function:

KU (a, b, z) =
π

sin(πb)

[
KM (a, b, z)

Γ(b)Γ(1 + a− b)
+ z1−bKM (1 + a− b, 2− b, z)

Γ(a)Γ(2− b)

]
.
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Using the fact KM (a, b, z) → 1, as z → 0, it follows that the values of
KU (a, b, z) grow like z1−b if z converges to zero. Let z(p) := 2µ

σ2p , then ψ can
be written as

ψ(p) =

(
σ2

2µ

)a
z(p)aKU (a, b, z(p)).

Thus, if p tends to infinity the values of ψ(p) grow like pb−a−1. Since the
highest exponent of g is q

q−1 , the condition q
q−1 < b− a− 1 ensures that

g

ψ
(p)

p→∞−→ 0.

Hence, the global maximum of g/ψ is attained at a finite value p∗. For a
number R ∈ N formula 13.5.2 in [1] yields

zaKU (a, b, z) =
R−1∑
n=0

(a)n(1 + a− b)n
n!

(−z)−n + O(|z|−R). (58)

Thus, for R = 1 we get

lim
p→0

ψ(p) = lim
p→0

(
σ2

2µ

)a
z(p)aKU (a, b, z(p)) =

(
σ2

2µ

)a
is positive. The final step of the proof requires verifying that the maximum
is not attained at p = 0. To this end, we will show that the derivative of the
quotient function is positive at the origin. It is sufficient to prove that

lim
p→0

g′(0)ψ(p)− g(0)ψ′(p) = lim
p→0

c1ψ(p)− c0ψ
′(p) (59)

is positive, where c1 and c0 are defined in (57). Since

dKu

dz
(a, b, z) = −aKU (a+ 1, b+ 1, z),

see [1], and writing z instead of z(p), the chain rule implies that the term
c1ψ(p)− c0ψ

′(p) can be written as(
σ2

2µ

)a [
c1z

aKU (a, b, z) + c0ap
−1
[
zaKU (a, b, z)− za+1KU (a+ 1, b+ 1, z)

]]
.

As p tends to zero, the term c1z
aKU (a, b, z) tends to c1. To analyze the

second term of the sum we will use formula (58) for R = 2; we obtain

zaKU (a, b, z) = 1 +
a(b− a− 1)

z
+O(|z|−2) (60)

and

za+1KU (a+ 1, b+ 1, z) = 1 +
(a+ 1)(b− a− 1)

z
+O(|z|−2). (61)
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Subtracting (61) from (60) and using the definition of z(p) we obtain

p−1
[
zaKU (a, b, z)− za+1KU (a+ 1, b+ 1, z)

]
=

σ2

2µ
(b− a− 1) + O(|z|−1)

p→0−→ σ2

2µ
(b− a− 1).

Thus, the limit in (59) equals

c1ψ(0)− c0ψ
′(0) =

(
σ2

2µ

)a [
c1 − c0

σ2

2µ
a(b− a− 1)

]
. (62)

Simple algebra yields

c1 = (c0 +Kf )
r

µ
and

σ2

2µ
a(b− a− 1) =

r

µ
.

Plugging these two identities into (62) we finally get

c1ψ(0)− c0ψ
′(0) =

r

µ
Kf + c0

[
r

µ
− σ2

2µ
a(b− a− 1)

]
=
r

µ
Kf > 0.

�

Since the R-function of a GOU-model is the same as the R-function of
a CIR-model and if both models have identical parameters µ, γ and σ, the
first two statements of Theorem 4.2 are true. The third part of Theorem
4.2 is not applicable in the case of a GOU-model. The assumption that the
quotient ψ1/ψ2 is supposed to be monotone increasing if σ1 < σ2 does not
generally hold. The parameters µ = 1/10, γ = 1/10, r = 1/10 and σ1 =
2/10 < σ2 = 3/10 provide an example. In the case of a GOU-model, the
open-ended question is whether or not the optimal outsourcing threshold is
a monotone increasing function of the diffusion coefficient σ.

5. Comparison and sensitivity studies
In this section, we shall illustrate how the objective value and the out-

sourcing date depend on the process (Pt)t. We numerically compute the op-
timal threshold value p∗ for specific parameter settings of the four models
analyzed in Section 4 (i.e. GBM-, DBM-, CIR- and GOU-processes). The
parameters are chosen with the view towards highlighting two facts: first,
while threshold values p∗ can be very similar for different models, the aver-
age outsourcing dates can be quite different; second, if (Pt)t is a GBM-model
such that µ > σ2/2 then the expected profit V ∗ of the outsourcing project
is typically much higher than for other models (see Table 1). For DBM- and
GBM-processes there are well known formulas of the mean hitting times τp∗
when starting at p0, p∗ ­ p0, viz.

Ep0
[
τp∗DBM

]
=
p∗DBM − p0

µ
, if µ > 0, (63)
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and, if 2µ > σ2,

Ep0
[
τp∗GBM

]
=

2
2µ− σ2 log

(
p∗GBM
p0

)
. (64)

While the mean hitting time of GBM depends on µ and σ, the mean
hitting time of a DBM process is independent of the diffusion coefficient
σ. Table 1 shows that small parameter variations might cause fairly large
changes of E[τp∗ ]. For example, in the case of GBM when changing σ from
0.18 to 0.2 the expected waiting time E[τ∗p ] increases by more than 5 times.

The mean hitting times of the mean reverting processes introduced in 4.3
and 4.4 can only be numerically computed. Numerical values can be given by
solving a boundary value problem or by evaluating the well known integral
expressions of average hitting times of such processes (for example, see [12],
15.3).

Remark 5.1 (Bounded effort) We shall briefly comment on necessary
changes of formulas and results in the situation when a firm’s effort θ is
bounded from above. Let θ ∈ [0, θ̄]. The optimal (bounded) effort θ∗b , cf. (2),
equals

θ∗b = θ∗ ∧ θ̄ =
(
p ∨ 0
K

) 1
q−1
∧ θ̄. (65)

Basic algebra implies θ∗b = θ̄, whenever p ­ Kθ̄q−1. If (65) holds, function
F (see (3) in Section 2) and functions g (see (27), (40) and (47) in Section 4)
have to be adjusted. In all these cases we substitute

α
(q − 1)K

q

(
p ∨ 0
K

) q
q−1

by α

[
p θ∗b −

K

q
(θ∗b )

q
]
.

The two expressions are identical if p ¬ Kθ̄q−1. The restriction θ to be
bounded only effects the g-functions. In all these cases, the g-functions of
the processes considered in Section 4 grow linearly in p (if p 7→ ∞). This
fact allows us to drop the condition β > q/(q − 1) in subsection 4.2, and the
condition (b−a−1) > q/(q−1) in subsection 4.4. All statements of Section 4
remain true in the case of bounded effort.

6. Conclusion
This study describes methods for computing optimal outsourcing times.

It is assumed that benefits and costs of a firm’s effort, which it invests in the
outsourcing project, are explicitly taken into account. The following contri-
butions are made:

• The study extends results by Moon to general profit flow or index
processes.
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Model
Parameters

p∗ V ∗ E[τ∗]
µ γ σ α aO

GBM 0.03 - 0.18 0.35 1.2 1.0195 52.9 1.39
GBM 0.03 - 0.20 0.35 1.2 1.0939 52.9 8.60
GBM 0.03 - 0.18 0.30 1.2 1.1855 52.4 12.48
GBM 0.03 - 0.18 0.35 1.18 1.1304 52.6 8.86

DBM 0.03 0.1 0.18 0.35 1.2 1.1026 33.6 3.42
DBM 0.03 0.1 0.20 0.35 1.2 1.1641 33.7 5.47
DBM 0.03 0.1 0.18 0.30 1.2 1.1954 33.3 6.51
DBM 0.03 0.1 0.18 0.35 1.18 1.1669 33.4 5.56

CIR 0.03 0.1 0.18 0.35 1.2 1.0412 31.7 1.47
CIR 0.03 0.1 0.20 0.35 1.2 1.1011 31.7 3.52
CIR 0.03 0.1 0.18 0.30 1.2 1.1638 31.4 5.85
CIR 0.03 0.1 0.18 0.35 1.18 1.1245 31.5 4.44

GOU 0.03 0.1 0.18 0.35 1.2 0.9873 31.7 0.00
GOU 0.03 0.1 0.20 0.35 1.2 1.0452 31.7 1.62
GOU 0.03 0.1 0.18 0.30 1.2 1.1395 31.4 5.02
GOU 0.03 0.1 0.18 0.35 1.18 1.0899 31.5 3.23

Table 1: Values of the optimal threshold p∗, the optimal value function V ∗(p0)
and the expected outsourcing time τ∗ for four different models and different
parameters. All processes start at p0 = 1. The fixed parameters are: r =
0.05, Kf = 1, K = 0.3, q = 4 and aI = 1.



32

• We demonstrate that finding an optimal outsourcing time can be re-
duced to solving a 1-dimensional fractional optimization problem.

• Optimal outsourcing policies are of threshold type. The sensitivity of
the optimal threshold p∗ on changes of model parameters are analyzed.
Structural properties of p∗ as a function of model parameters are proved
under sufficient conditions. For special diffusions, we show these condi-
tions to hold.

• Numerical studies illustrate that optimal outsourcing times are quite
sensitive with respect to variations of the fraction of the operation that
will be outsourced and the times critically depend on the characteristics
of the profit rate model which will be adopted.

Mean reverting profit models usually imply less optimistic predictions
about the pay-off of outsourcing decisions than a GBM-model does. We offer
numerical values supporting this claim. A critical issue is the relationship be-
tween different [optimal] trigger points – as suggested by different models –
and the average waiting time until [part of] the in-house operation should be
outsourced. The waiting time depends on the characteristics of the process.
Simulation packages are useful tools when analyzing these relationships. In
addition, integral expressions of expected hitting times exist and the evalua-
tion of these integrals is an alternative to numerically solving the boundary
value problems which are associated with the hitting-time problems.
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Optymalne momenty zlecania zadań do specjalizowanych
wykonawców

Kurt Helmes & Torsten Templin

Streszczenie W pracy przedstawiono połączenie metody analizy opcji rzeczywi-
stych do wyznaczania optymalnych momentów zleceń firmom zewnętrznym (ZFZ1)
zadań będących częścią realizowanego projektu z techniką programowania linio-
wego do rozwiązywania jednowymiarowych zadań optymalnego zatrzymania proce-
sów stochastycznych. Przyjęto model częściowego ZFZ zaproponowany przez Y. Mo-
ona(2010), w którym zakładamy, że proces zysków jest geometrycznym ruchem
Browna i uwzględnia bezpośrednio korzyści i koszty wszystkich działań, które firma
doznała przed chwilą decyzji o ZFZ. Problem ustalenia kiedy zastosować ZFZ oraz
wielkość tego zadania jest ustalana na podstawie związanych z tą operacją procesów
przepływów zysków lub indeksów modelujących które z założenia są jednowymiaro-
wymi procesami dyfuzji. Otrzymane optymalne czasy zleceń są momentami zatrzy-
mania typu progowego. Przeprowadzono analizę wrażliwości na zmienność rynku
oraz inne parametry modelu. Odpowiednie problemy optymalnego zatrzymania są
przeformułowane na nieskończenie wymiarowe zadania programowania liniowego i
nieliniowe zadania optymalizacji. To pozwala na nowe podejście do analizy wrażli-
wości. Wynikają z tego szczegółowe zalecenia dotyczące zarządzania projektami z
wykorzystaniem ZFZ.

1outsourcing

http://wydawnictwa.ptm.org.pl/index.php/matematyka-stosowana/article/viewArticle/289
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Słowa kluczowe: korzystanie z zewnętrznych źródeł, optymalne zatrzymanie, procesy
powracające do średniej, analiza wrażliwości, programowanie liniowe.

Wprowadzenie Współcześnie zamawianie realizacji części projektu czy pro-
dukcji u podmiotów zewnętrznych (ZFZ) stało się integralną częścią globalnej
gospodarki. W celu poprawy konkurencyjności firmy zlecają różne elementy
swoich działalności podwykonawcom, np. produkcję podzespołów, zadania
rozpoznania rynku, dystrybucji i usług (zob. np. [2], [10], lub [18]). Oczy-
wistym bodźcem do takich działań – zwłaszcza w regionach o taniej sile
roboczej, takich jak Azja czy Europa Wschodnia – jest zmniejszenie kosztów
(patrz: [2] i [18]). Jak pokazano w [19], przenoszenie części zadań na podwy-
konawcę nie mogą być spowodowane jedynie redukcją kosztów. Przykładowo,
możliwe jest, iż osoba trzecia może bardziej efektywnie świadczyć usługi lub
oferują wyspecjalizowane technologie. W sektor technologii informacyjnych
pokazują to znane przykłady (patrz [4]). Dodatkowym powodem takich dzia-
łań jest to, że przez przekazanie niektórych operacji lub części operacji do
podwykonawców firma jest w stanie skoncentrować się na działaniach, w za-
kresie których ma najwyższe kompetencje (patrz [19]).

Szczególną cechą zarządzania projektem przez ZFZ jest możliwość reali-
zacji w tym trybie również części podzadania. Askin i inni [3]pokazują to na
przykładzie usług centrów telefonicznych (call center), gdzie wiele firm waha
się przed oddaniem istotnej części tej działalności osobom trzecim. W ankie-
cie badającej ZFZ w 50-ciu przedsiębiorstwach okazało się, że mniej niż 30
% firm lokuje w zadaniach zewnętrznych więcej niż 50 % budżetu technologii
informacyjnych (patrz [4]).

Te obserwacje doprowadziły Shy i Stenbacka [17] do wprowadzenia mo-
delu, w którym firma na etapie planowania wyróżnia pewną liczbę zadań w
procesie produkcji określonego produktu końcowego. Każde takie wyróżnione
zadanie może wykonać we własnym zakresie lub u podwykonawcy, którym
jest wyspecjalizowana firmy zewnętrzna. Biorąc pod uwagę redukcję kosztów
poprzez „wyprowadzenie” linii produkcyjnej z jednej strony oraz dodatkowe
monitorowanie kosztów z drugiej, Shy i Stenbacka zidentyfikowali część zysku
wynikającą ze zlecania zadań poza firmę.

Bardziej ogólny model, który umożliwia podejmowanie decyzji w oparciu
o proporcję zlecanych na zewnątrz zadań i zakłada, że dysponujemy pew-
nymi, niekompletnymi informacjami rynkowymi został zaproponowany przez
Alvareza i in. [2]. Moon [14] natomiast, przyjmuje podobny model, ale kontro-
luje część zadań wykonywanych samodzielnie na poziomie strategicznym. W
rozważaniach przeprowadzonych w tym artykule analizowane jest częściowe
ZFZ, gdy poza firmę przekazywana jest ustalona część zadań α, α ∈ [0, 1]. Po-
nadto, wyniki badań ankietowych zamieszczone u Barthelema [4] pokazują,



K. Helmes, T. Templin 35

że sukces z ZFZ zależy od nakładów poniesionych w taki sposób zarządzania
projektem. Barthelema wymienia cztery różne rodzaje (potencjalnie wyso-
kich) ukrytych kosztów ponoszonych na ZFZ: koszty na poszukiwanie wy-
konawcy (dostawcy usługi), koszty zamawiającego, koszty zarządzania tymi
zleceniami oraz koszty procesu transformacji projektu. Ponadto, koszty za-
rządzania to nie tylko identyfikacja, ocena i kontrola kosztów. Przykładowo,
wybierając specjalizowanego dostawcę usługi i negocjowanie odpowiednich
umów zazwyczaj wpływ na efekty projektu (patrz: [4], [14] oraz [19]). Po-
święcenie dodatkowego czasu i środków na wyszukanie wyspecjalizowanych
dostawców zwykle oznacza, że produkt końcowy jest lepszej jakości i/lub
koszty produkcji są niższe. Z tego powodu uwzględnienie kosztów i efektów
ZFZ jest integralną częścią analizy modelu zarządzania z wykorzystaniem
ZFZ przeprowadzonego w tej pracy.

Wzorująć sie na [2], [14] i innymi opracowaniami, w pracy przyjmuje się
modelowanie ZFZ podobne jak przy analizie opcji rzeczywistych. Oznacza
to, że na podstawie pewnych istotnych informacji rynkowych, modelowanych
przez jednowymiarowy proces dyfuzji stochastycznej, firma usiłuje maksyma-
lizować zysk poprzez wyprowadzanie do podmiotów poza firmą części zadań
w chwili, gdy osiągane są optymalne wartości rynkowe. Podobnie jak [2],
a także [14], wykorzystywany jest geometryczny ruch Browna (GBM) jako
podstawowy procesu modelujący zysk firmy. Chociaż GBM jest popularnym
modelem w kontekście zarządzania przez dzielenie zadań z podmiotami ze-
wnętrznymi to ma on pewne wady. Na przykład, jeśli parametr dryfu GBM
jest większy niż stopa dyskontowa, to optymalna wartość analizowanego pro-
blemu zarządzania przez dzielenie zadań z podmiotami zewnętrznymi, jest
nieskończona. Ponadto, jeśli współczynnik dyfuzji GBM jest „duży” w sto-
sunku do parametru dryfu, to trajektorie zysków będą dążyć do zera. Inną
wadę modelu GBM pokazuje i starannie analizuje Moon [14]. Dla istnie-
nia optymalnego momentu ZFZ trzeba przyjąć techniczny warunek na te-
mat relacji między strukturą kosztów przygotowania zlecenia zewnętrznego
i parametrów procesu zysków. Przy innych modelach procesu zysków takie
założenia nie są konieczne o czym szerzej w podrozdziale 4.3. W kontekście
modeli dopuszczających ZFZ przyjmuje się, że procesy zysku maja tendencję
rosnącą przy horyzoncie krótkim i średnim, a w dłuższej perspektywie po-
winny oscylować wokół jakiejś konkretnej wartości dodatniej. Analizowany
jest również przypadek ujemnej stopy zwrotu, co najmniej gdy ma to miejsce
przez pewien (krótki) czas. W celu uwzględnienia tych aspektów rozważany
jest ogólny procesu jednowymiarowej dyfuzji do modelowania zysków oraz
stosuje się metody programowania liniowego do analizy przypadku GBM,
jak również innych procesów, przykładowo procesów powracających do śred-
niej. Jak już wspomniano należy brać pod uwagę zarówno koszty jaki i zyski
wynikające ze zlecania zadań projektu podmiotom zewnętrznym. W tym celu
w pracy przyjmuje się model Moon’a [14], w którym przez θ ­ 0 oznacza na-
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kłady (ograniczoność z góry nie jest zakładana). Badany jest również wpływ
ograniczenia z góry nakładów, 0 ¬ θ ¬ θ na wyniki. Przyjmuje się, że wszyst-
kie korzyści związane z nakładem θ są ujęte ilościowo w wyrażeniu, które jest
proporcjonalne do θ i strumienia zysków w czasie, gdy ZFZ zastosowano.
Termin wypłata dla takiej formuły jest uzasadniony w pewnych przypad-
kach, jak np. gdy przyjęte rozwiązania ZFZ obniżają koszty lub dzielą zysk
z podzadania. Wszystkie nakłady θ wchodzą do modelu jako wypukła funk-
cja potęgowa na półprostej dodatniej. Okazuje się, że ograniczenie z dołu tej
funkcji przez funkcje liniową i multiplikatywna forma uwzględnienia zysków,
to dwie znaczące cechy tego modelu.

Inaczej niz u Alvareza [2], w niniejszym opracowaniu zastosowano po-
dejście Moon’a [14] zakładając, że część projektu, którą przeznaczamy do
wykonania na zewnątrz firmy α jest zadana i nie wynika z przesłanek opera-
cyjnych, ale jest wielkością statyczną. Oznacza to, że w tym artykule rozwa-
żamy model zarządzania projektem dopuszczający zlecanie części zadań na
zewnątrz w ustalonej części nakładów theta w ustalonym czasie T . Łączna
wypłata z decyzji ZFZ zależy od:

(i) oczekiwanego zdyskontowanego zysku bez ZFZ;

(ii) procentowy udział oczekiwanych zysków zdyskontowanych generowa-
nych przez ZFZ;

(iii) zysków z zadań pozostawionych do wykonania w firmie;

(iv) część wypłaty (optymalna wartość wynikająca z zadania maksymali-
zacji po wszystkich θ ­ 0) związanej z nakładami firmy na realizację
części zadań przez ZFZ.

Nierówności wariacyjne lub zasada gładkiego dopasowania, to klasyczne
metody stosowane do rozwiązywania problemów optymalnego zatrzymywa-
nia procesów. Problem wyznaczenia optymalnego momentu ZFZ, rozważany
w tym artykule, jest równoważny problemowi optymalnego zatrzymania pro-
cesu. U Moon’a [14] technika gładkiego dopasowania służy do analizy wraż-
liwości modelu ZFZ gdy procesu zysku jest modelowany geometrycznym ru-
chem Browna. Bada on, między innymi, wpływ niepewności na rynku na
optymalny termin ZFZ (czyli wpływu zmiany współczynnika dyfuzji i innych
parametrów modelu na optymalny moment takiego zlecenia). W analizie czę-
ściowego zlecania podmiotom zewnętrznym części projektu przeprowadzonej
w artykule przypadek rozważany przez Moon’a cite moon z geometrycz-
nym ruchem Browna jest przypadkiem szczególnym. Dzięki temu udało się
wykryć nieścisłość w pracy Moon’a [14] i wprowadzić korektę do jego wyni-
ków. Co więcej, wprowadzone metody programowania liniowego i sformuło-
wania nieliniowych problemów optymalizacji pozwalają uzyskań analogiczne
rezultaty dla znacznie ogólniejszych procesów zysku niż geometryczny pro-
ces Browna. Charakteryzacja optymalnego czasu zatrzymania w kategoriach
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arg-max pewnej określonej funkcji nieliniowej daje możliwość łatwego, de-
terministycznego, wyznaczania optymalnych momentów ZFZ. To też daje
możliwość analizy wrażliwości w nowy, efektywny sposób.
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