PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 41 | 1 |
Tytuł artykułu

Viability theory: an applied mathematics tool for achieving dynamic systems' sustainability

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
 Sustainability is considered an issue of paramount importance; yet scientists andpoliticians still seek to understand what it means, practically and conceptually, tobe sustainable. This paper's aim is to introduce viability theory, a relativelyyoung branch of continuous mathematics which provides a conceptual frameworkthat is very well suited to sustainability problems.  In particular, viability theory can be used toanswer important questions about the sustainability of systems, including thosestudied in macroeconomics, and can be used to determine sustainable policies fortheir management.  The principal analytical tool of viability theory is theviability kernel which is the set of all state-space points such that it is possible for evolutions starting from each of those points to remain within the system's predetermined constraints indefinitely. Although, in some circumstances,  kernel determinationcan be performed analytically,  most practical results in viability theory rely on graphical approximations of viability kernels,which for nonlinear and high-dimensional problems can only be approached numerically.This paper provides an outline of the coreconcepts of viability theory and an overview of the numerical approachesavailable for computing approximate viability kernels.  \vikaasa{}, aspecialised software application developed by the authors and designed tocompute such approximate viability kernels is presented along-side examples ofviability theory in action in the spheres of bio-economics and macroeconomics.
Rocznik
Tom
41
Numer
1
Opis fizyczny
Daty
wydano
2013
online
2013-07-31
Twórcy
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ojs-doi-10_14708_ma_v41i1_409
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.