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A bstract,. The finite difference “box” scheme, (see also [1],[2]), is considered on the 
simplest possible model of single first order linear hyperbolic equation: ut. +  iiux =  0 
with constant, coefficient //, and one space variable. The optimal version of the scheme, 
which is nonoscilating and unconditionally stable with respect to the initial and boundary 
conditions, is derived in the class of box schemes of the order at, least one. If apropriately 
iterated, this ścinane may be applied to general systems of quasilinear first order hyperbolic 
equations in one space variable, as an explicit, unconditionally stable solver. For more than 
one space variable this solver is applicable via splitting (see [3]).

O rder. Consider the model equation ut +  iiux — 0 with /i > 0, and the 
following finite difference “box” scheme for this equation:

(1) m i"+; -  &«»+» + dul+l +  cut =  0

where have to approximate u(tn,Xk) with tn =  nr and Xk =  while 
r > 0 and fi >  0 are time and space step respectively.

Put

a =  c 4 +  A / z d 4 , —b =  c 3 +  A  p , d 3 ,

(2) c =  ci +  A/xc?i, d =  c2 +  A//d2,

Assume that the solution u(t,x)  is in C 3. Inserting the funr<;' ' ’ ' >i into 
equation (1 ) and developing, we get in the standard way:

[Cl +  C-2 +  c3 +  C4 +  A//(til +  d,2 +  d3 +  r/4 )] 7Z-(- 

(2 ) +M ro +  C4 +  Xfl(d,2 d~ d,̂ ]\ux +  A/?,[c 3 +  C4 +  A //(d3 +  G?4)]7/  ̂—(-
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+ — [c'2 +  C\ -f \(j,(d.2 +  y\uxx 4- Xh2[cą -f- \^,dĄuxtĄ-

\2h2
H— 2— + c4 +  Xfi(ds 4- =  o(h2).

Function u and its derivatives have to be taken in (tn,Xk)- Taking into 
account the equation and its derivatives:

ut 4- fj,ux =  0,

"F HU'xx 0?
Utt +  V’Uxt =  0,

we can write down the formula (3) using only u(tn,Xk), ux (tn,Xk), and 
"rr(b, , ;,:A- ) :

[ci +  C-2 +  C3 +  C4 +  + ^ 2 + ^ 3 + dą)]u(tn,Xk) +
(4) +h{(>2 +  (-4 +  Xfi(—C3 — C4 4- d>2 4- <̂4) 4- \2fj,2(—ds — d,4)]ux (tn, Xk) +

, I 2rCl +  c4 ,  ̂ , d 2 + d 4  ̂ , (2 2 / C3 +  C4 J ^ l+/,, [— -—  +  Ap(---- ---------c4) +  A \L (—  ---------d4)+

+  A 3/73(d 3 4- d 4)]?j,a;a:( t n , j ; fc) =  o(/i2).

I11 order to obtain the residual in (4) of the form ()(h2) at least, we have 
to set:

d\ 4- d.2 4- d3 +  d,4 — 0,
(5) C3 +C 4 -  d2 -  d4 =  0,

c2 +  c4 =  0,
<̂3 +  0?4 =  0.

This is a system of five linear algebraic equations with eight unknowns 
ci,(‘-2, <43, C4, r/i, r/2, ^3, d4. We may solve the system (5), expressing ci, c2, 
r3, di, r/3 as functions of 4̂ and C4. Put

v =  d2,
y  =  d4,
2: =  c4;

w(' get:

Cl =  z - v  -  y,

C2 =  - z ,
(()) c3 =  - C l  = v  +  y -  z,

<h =  - v ,  
fh =  - y -
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Under the conditions (6) the residual of equation (4) is of the form:

h2Xfi v +  y X i i . .
z +  — (v -  y) tlxxif'ni Atk) +  o(h ).

Denote:
v +  y Xy

T {v y)\

this is the, coefficient of diffusion of the scheme (1). Now, the coefficients a, 
I), c. d of equation (1) are the following:

v + y  , v —y , _ , . v + y
a =  z +  X/iy =  p H----- +  Ap — ----------- h Xyy =  p +  (1 +  A/i) —— ,

(7) - b  =  v +  y -  z -  Xfiy =  - p  +  (1 +  A /i)^-y^,

v +  y
C =  Z -  (v +  y) -  Xyv =  p -  (1 +  A/i)—-— , 

d =  —z +  Xy,v =  —p — (1 — Afi)V ^  ^ .

As a conclusion, let us formulate the following:

Pr o po s it io n  1. The scheme (1) with coefficients given by formulae (7) 
is of the order one (residual is of the form 0 (h 2)).

If we put z — — y) (p =  0, i.e. the diffusion vanishes! ) , then
the scheme ( 1) is of the order two (residual is of the form 0 (h 3)). ■

N onoscillation . We are now interested in another feature of scheme 
(1): the property of nonoscillation. In other words, we desire to make a 
choice of coefficients in (1), which disable creation of parasite oscilations 
in a solution of finite difference equation (1). It is well known, that such a 
parasite oscillations apear often in rapidely varying solutions (noncontinuous 
data), and that they are even able to destroy this solution completely.

Let us now observe how procedes the operation of solving the equation 
(1). Assume we know:
• initial conditions '</((),?;),
• boundary conditions u(tn, 0) =  gn.

The whole process of solving goes on paralelly to the :c-axis from x =  0, 
in the direction of the positive semiaxis. This means, that the equation (1) is 
solved with respect, to the variable Observe that remaining variables:
v/" + 1, u)'+1, and uf are known. In other words, the process has the explicit 
character.

Assume that the grid contains M points on the x-axis: aq, £2, 2:3, . . .,xm  •
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Denote: Un =  [u f , u f , u nM]T,

- 1 0 0 0 • • 0 ()-
- b a 0 0 • • 0 0

A = 0 - b a. 0 • • 0 0
0 0 -h a • • 0 0

. 0 0 0 0 - b a _

- 0 0 0 0 • • 0 ()- ~<Jn + l '
c d 0 0 • • 0 0 0
0 c d 0 • • 0 0 j-n +1 _ 0
0 0 c d • • 0 0 0

. 0 0 0 0 • c d. 0

Tin' scheme (i) can be written as tłicj recurrence formula:

AU" + l + DUn =  f n+1 \

or. equivalently.

(8) Un+1 =  CUn + g n+1,

where C  — —A ~ LB  and gn — A ~ 1 f n. We can now present the equation (8) 
in the explicit, form:

(9) U" =  C n U° +  C,n~]g l +  G " ' - y  +  • • • +  C n~lgn~l +  gn.

From (9) it is clear, that nonnegativity of the elements of the matrix C is a 
sufficient condition for “nonoscillation in Un.

Ii is easy to compute the elements of C  directly:
M — 1

C’ =  - (  l k E h)d,’iag{\,a.,a, - ■ ■ ,a )~ l B. 
k =o

wheif' 7 =  K  and E  is following nilpotent matrix of the dimension M:

- 0 0 0 0 ••0 ()-
1 0 0 0 • -0 0
0 1 0 0 0
0 0 1 0 0

. 0 0 0 0 ■ • 1 0.
F h o p o s i t i o n  2 . I fv  +  y >  0, then the following conditions a,’re sufficient 

for nonoscillation of the scheme (1 ):

\p\ < (1 +  A/0
v +  y

2
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and

( !  -  <  P  i f  A/i <  1

(A/i — 1) V ^  -  < p if 1 < A/i.

The schema (1) is optimal (i.e. the coefficient p of diffusion is minimal,

1. 0 < A//. < 1 and

a =  v +  y. h — 0, c — —Xp,(v +  y), d =  —(1 — A/i)(u +  y )

( "backwa.rd upwind scheme” ).
2. A//, > 1 and

a =  \fi[v +  y), b =  (A/i — l)(u +  y), c = —(?; +  ?/), d =  0

(a hind o f  "implicit backward Euler scheme” ).

P r o o f .  A sufficient condition for nonoscilation is the positivity of all 
t lie (dements of the matrix C. Since A/i > 0, this last condition is satisfied 
if the following tree inequalities hold:

v  4- 'll
a = p  +  (1 +  A/ i)— > 0,

(ID) 6 =  p - ( l - A / i ) ^ > 0,
V +  v

c =  p -  (1 +  A/i) — <  0,

~d  =  p +  (1 -  A/i) > 0.

The inequqlity \p\ < (1 +  A/i)^^- implies directly a > 0 and c < 0.
If A/i < 1, then 0 < p — (1 — A /i)^^  =  6 and — d =  p -f (1 — A /i)^^  > 

/ > - ( l - A / / . ) ^  =  f e > 0.
If A// > 1 then 0 < p — (A//, — 1)^|^ =  p +  (1 — A /i)^ p  =  —d and 

/; =  / ; + (A/ i - 1 ) ^  > p - ( A / i - l ) ^  =  - d > 0 .  ■

Stability. Let us now investigate the stability of the scheme (1). We 
shall consider separately the stability with respect to the initial and the 
boundary conditions, using the so called Fourier Method. 1

1. Stalnlit/y with respect to the initial conditions. We shall look for the 
solution of the form



3G K. Moszyński

where cv is an arbitrary real number and 7 is complex. Inserting into (1), 
wo get the following formula for the absolute value of 7 :

2 c2 +  d2 +  2cds 
l7' ~  a2 +  b2 -2 a b s '

where .s =  cosa. hence s is an arbitrary real number such that — 1 <  s <  1 . 
Let <[ — z ~ v — ;//; then

<I>(.s) =  |7 |2

t]2 +  z2 — 2vXy,(q 4- z) +  2v 2X 211,2 — 2 s(qz — vXy(q 4- z) +  v2X2y 2)
<12 4- z 2 4- 2yXy(q 4- z) 4- 2?/2A2//2 — 2s(qz 4- yXy(q -f z) 4- y2X2//,2)

Observe that the first derivative ^ '(s) is of the constant sign in any 
interval of its domain, hence <I>(S) assumes its global maximum in the interval 
[—1. 1] for s ~ — 1 or ,s — 1 . We have:

d>(-l)
(q +  z)2 4- Av2X2y 2 

(q 4- z )2 4- AyXy(q 4- z) +  Ay2X2y 2 ’ 
* ( ! )  =  !.

The scheme (1) is stable if 4>( — 1) < 1 or, equivalently, if 

(II)  v2 Xy. < y(q +  z) 4- y2Xy.

According to the definition of the coefficient, p of diffusion, we may write:
q +  z v +  y Xy
- = Z -  —  = P + Y {” - V ) -

Expressing now p in the form

P =  |1 ~ V I

with nonnegative parameter r, we get another form of the inequality ( 11):

2 v
2

h x 1 v +  y , V  i x I1 -  V I  —— r 4- — (v -  y) +  ?/'
Xy.

Ait. uj -  and multiply the last inequality by we get the equivalent
inequality

(12) Xficu2 — (|1 — A//,|'r 4- Xy)uj — |1 — A/;,|r < 0.

11 is easy to verify that the binomial at the left hand side of the inequality 
( 12) has two real roots: uq < 0 and o>2 > 1, hence the final version of the 
stability condition has the form:

uj\ tn 5; ^2-

Hence, we have always stability with respect to the initial condition if 0 < 
v < y. We can now formulate:
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Pr o po s it io n  3. I f O < v < y  and r > 0, then the scheme (1 ) with coef-
ficients fliven by formulae (7) is stable with respect to the initial condition.

R o m a rk .  If r — 0, then the scheme (1) is of the order two. If 1 < r <  
j , then the scheme (1) is nonoscillating.

2. Stability with respect to the boundary condition. Now, we are looking 
for the particular solution of the equation (1), of the form:

-  7 fcem n ,

where ev is an arbitrary real number and 7 is complex. Inserting vfi into 
equation ( 1) we get the following formula for [7 I:

$ ( ,s )  =  j7 |2 =
b2 +  cr 2 bcs
a,2 +  d2 +  2ads ’

when: ,s =  cosa. Since, again, the first derivative of the function $  is of 
the constant sign, it is enough to consider only <3>( — 1) and <£(1). Using the 
formulae (7) we get:

$ ( - ! )
4 p2 +  (v +  y ) 2  — 4 p(v +  y) 
4 p2 +  (v +  y)2 +  4 p(v +  y ) '

$ ( i )  =  ^ ( , , + ^ 2 =  1

W(' obtain the following

Pr o po s it io n  4. The scheme (1) with coefficients given by the formulae 
(7) is stable with respect to the boundary condition if:

p > 0

and

v +  y >  0.
R e m a r k .  The choice p > 0 (as suggested by the Proposition 4), and 

n = y is always good; since the scheme (1) depends in fact on v +  y, we 
may always put. v +  y =  1. This choice gives a simple form of the optimal 
schemes of the Proposition 2:

1 ■ 0 < A//, < 1 and

a =  1, 6 =  0, c — — Ap, d =  Ap. — 1,

2. A// > 1 and

a =  Ap, 6 =  Ap, — 1, c =  —1, d. =  0.

A general remark on stability. Let us apply scheme (1) on the rect-
angular grid with steps h >  0 and r >  0 (on the x and t axes respectively)
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to the following model initial - boundary value problem:

ut +  /iux = 0, /i > 0,
(11) u(0,a:) =  4>(:r), 0 < x < L,

u(t,0) =  T (t), 0 <  t < T.

According to the CFL condition, the strip of the plane:

0 < x < L,
0 < t <  T

is divided into two disjoint domains of influence by the stright line t — Xx, 
where A =  The part under this stright line is uniquely influenced by 
the initial condition, while the part over the stright line, by the boundary 
condition. This observation justifies our technique of treating separately the 
stability with respect to the initial and the boundary conditions, at least on 
the discussed model problem.

Numerical experiments. The program which computes the solution 
of the model problem (13) applies in general the “classical box scheme” 
with zero diffusion (p =  0). If, however, the sudden jump of the deivative 
o f the solution or quick oscillations appear, then the classical box scheme 
is replaced by the optimal one, according to Proposition 2. The decision 
concerning the local choice of the scheme depends on parameters defining the 
upper bound of the the derivative of the solution and the upper bound of the 
oscillation of the solution, wich are considered as admissible for the classical 
box scheme. These two parameters are among the data of the program.

0 .2 4 .6 8 10

Figure 1. Evolution of the step-function from the left to the right: numerical solution of 
t.ln; equation ut +  ux =  0; space step h = .002, time step r  =  .001, number of steps: 250
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