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A b stra c t. Significant progress has been made in the last few years in the numerical 
solution of functional differential equations. It is the purpose of this paper to review the 
results in this area. Special attention is given to implementation of one-step methods and 
predictor corrector methods for functional differential equations including equations of 
neutral type and to the stability theory of numerical methods for these equations.

1. Introduction. It is the purpose of this paper to review the results, 
algorithms and problems in the numerical solution of functional differential 
equations (FDEs)

/i d  / y'(t) =  / ( U * e M ] ,
l  y(t) = g(t), * e [a ,a ] ,

and neutral functional-differential equations (NFDEs)

/i  /  y'M  =  /(*> y(-)» */'(•))> t e k  6],
 ̂ ' \ y(t) = g(t), / € [ « , « ] ,

a < a < b. Here, g is a given initial function and /  is a Volterra operator, 
i.e. /  in ( 1.1) depends on y(s) and /  in ( 1.2) depends on y(s) and y'(s) for 
s < t. It is usually assumed that /  is continuous and satisfies Lipschitz con-
dition with respect to the arguments y(-) and y'(-) (compare [44-47, 49, 56]). 
However, these equations have been also studied under weaker hypotheses 
such as, for example, Perron type conditions appearing in the theory of 
differential equations (see [43, 53, 54]).
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Equations (1.1) and (1.2) include as special cases ordinary differential 
equations (ODEs), delay differential equations (DDEs) (including equations 
with state-dependent delays) and Volterra integro-differential equations (VI- 
DEs). These equations have found applications in many areas of science 
and engineering such as control theory, oscillation theory, electrodynamics, 
biomathematics, pharmacokinetics, theory of learning and medical science 
(see [14, 28, 29, 37, 59]).

In our review of numerical methods particular emphasis will be given 
to the methods which are analogues of discrete variable methods for ODEs. 
These methods include as important special cases Runge-Kutta methods 
and linear multistep methods.

In the next section we introduce quasilinear multistep methods for 
NFDEs. This is a very general class of methods which includes as special 
cases most of the methods for the numerical solution of these equations. In 
section 3 we review some problems of implementation of one-step and linear 
multistep methods such as the choice of appropriate representation of under-
lying formulas, local error estimation and step and order changing strategies. 
We also review specific algorithms for FDEs and NFDEs. In section 4 we 
review stability properties of one-step methods and linear multistep method 
for FDEs and NFDEs. Finally, in section 5 we briefly mention other ap-
proaches to the numerical solution of FDEs such as extrapolation methods, 
methods based on Kato-Trotter theorem for semigroups of operators and 
techniques based on Lanczos-Tau method.

An extensive survey of developments in the area of numerical solution 
of FDEs up to the year 1972 was given by Cryer [22]. A more recent survey 
is due to Bellen [11]. In this paper we concentrate mainly on the results 
obtained in the last few years.

2. Q uasilinear m ultistep m ethods for N FD E s. Let there be a ste- 
psize h e  (0, ho], h0 > 0, and integers k > 1, 0 > 0, and define the grid 
ti := a +  ih, i =  0, 1, . . . ,  A , where Nh = b — a. Suppose the functions 
dj : [0,1] -»• R, j  = 0 ,1 , . . . , / ? — 1, and 0 ,^  : [a ,6] X Cn[a,b\ x Cn[(i,b] X 
[0,1] X [0,ho] Rn are given, where Cn[a,b](Cn[a,b]) is the space of conti-
nuous (piecewise continuous) functions from [a, 6] into Rn. The quasilinear 
multistep method for the numerical solution of ( 1.2) is defined by

(2 1) /  yh{ti+k — 1 T rh) T 5^j'=0 aj(.r>)yh(j'i-\-j') = h<j)(ti, 2//i( '), ri ^)?
V ' } \ zh(ti+k- i  +  rh) = i)(ti,yh(-),zh(-),r,h),
i =  0,0+  1, . . . ,  N -  k, r E (0,1]. Usually, 0 = 0 or 0 = 1. Here yh and Zh are 
approximations to Y  and Y 1 respectively, where Y is the solution to (1.2). 
It is assumed that these approximations are given on the initial interval 
[a, Zfc-1+0]. These initial approximations could be obtained by, for example,
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one-step methods considered in [47, 72], It is easy to avoid this starting 
problem if a < a. It is also possible to avoid the starting problem if a = a 
by some modification of NFDE under consideration or by implementing 
these methods in variable step/variable order mode.

Methods o f type (2.1) include as special cases most of the discrete va-
riable methods for the numerical solution of ( 1.1) and (1.2). In particu-
lar, they include one-step methods and linear multistep methods. The for-
mer class includes collocation methods and Runge-Kutta methods and the 
latter class includes Adams-Bashfort, Adams-Moulton, and backward dif-
ferentiation methods. As explained in [49] the methods (2.1) also include 
predictor-corrector methods.

Quasilinear multistep methods have been investigated in [53] in the con-
text of ODEs and in [43] in the context of FDEs. In these papers very general 
convergence results were obtained under Perron type conditions imposed on 
the function /  which define the initial-value problem and on the increment 
functions of the method. In [49] convergence and order properties of (2.1) 
for NFDEs were investigated under the Lipschitz-type conditions imposed 
on / ,  (f) and ip. To formulate these results assume that:
Hi. For any y E Ci[a, b] the mapping t —> / ( f ,  y(-), y'(*)) is continuous on 

[a, 6].
H2. The Lipschitz condition holds

II/(*> 2/l(')» * l ( 0 )  -  /(*> 3/2(’ )> 22(0)11 <

< Ll(\\yi -  2/2 ||[a,t] +  Ikl -  22||[o,t-«l) +  -£-2 11*1 -  22||[o,i],

with Li > 0,0 < L2 < l,tf > 0, for t E [a ,6] ,y i,y 2 € Cl[a,b], zi, z2 E 
Cn[a, 6]. Here, C\[a,b] denotes the space of functions of class C 1 from 
[a ,6] into Rn and ||a;||j-tj stands for 5itp{||.x*(s)|| : a < s < / } ,  where 
|| • || is some norm in Rn. These conditions guarantee the existence 
of a unique solution Y  to (1.2) (compare [56]). We also impose the 
following conditions on the functions (tj,<p and ip:

H3. The functions aj, j  =  0 ,1 , . . . ,  k — 1, are continuous, «fc_i(0) = — 1 and 
a j(0) =  0 for j  =  0, 1, . . . ,  k — 2.

H4. <f>(t, y(-), z(-), 0,0) =  0 and

\\4>{t,yi{-)zi(-),r,h) -  <f>{t,y2(-)z2(‘ ),r,h)\\ <
< M (||»l -  Sj|||at|+fcft] + pi -  «2|||i,,+*fc]),

with M  > 0, for t E [a,b],y1,y2 E Cn[a,b],zu z2 E C „[a ,6],r  E (0,1], 
h E (0, ho].

Hs • J/i(-)2l(-)» *5 h) -  V2(-)z2(')> *011
<  Ll(\\yi -  y2||[a,i+fc/i] +  11*1 “  *2||[o,t+fe/i-fi]) +  ^ 2||*1 -  z2 \\[a,t+kh], 
with L\ > 0,0 < L2 < 1,£ > 0, for t E [a, 6], x/i, x/2 E Cn[a, 6],
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Zi, Z2 e Cn[a, 6], r E (0,1], h E (0, h0].
Define the local discretization errors of (2.1) by

rj(t, r, /i) :=  Y(t + (k -  1 +  r)h) 
k- 1

+ a i(r )y  (< +  jh ) -  h<Ht, y  (•), y '( - ) ,  r, /*).
3=0

v{t,r ,h ) := Y'{t +  (k -  1 +  r)h) -  V<*,y(-)>i "(*)>r>*0» 
f 6 [a, b — kh], r 6 (0, 1], and put

77(h) :=  sup{\\rj(t,r,h)\\ : t e [ a , b -  kh],r E (0 ,1]},
77(h) :=  5np{||r7( /, 1, h)|| : t  £ [a ,b -  hh]},
v(h) :=  57i;7{||^(/, r, h)|| : / E [a, b — kh], r E (0 ,1]}.

The method (2.1) is said to be consistent if 77(h) =  o (l), 77(h) =  o(h), and 
v(h) = o ( l )  as h —> 0. This method is said to be of order p if 77(h) = 
0 (h p), 77(h) =  0 (h p+1) and 1/(h ) = 0 (h p) as h —► 0. The method (2.1) is 
said to be stable if no root o f the polynomial

A: —1

p(z) = zk + Y J aj(1)zj
j=0

has modulus greater than one and every root with modulus one is simple.
Denote the global error functions of the method (2.1) by Ch := — Y

and eh, := Zh, — Y 1. We have the following convergence theorem.

T h e o r e m  2.1 ([49], compare also [44, 46, 47]). Assume that H\-H5 
hold, the method (2.1) is consistent and stable, and that ||̂ /i||[a <jt_1+e] = o(l) 
and 11̂ *11̂  *fc_ 1+e>] =  o(l) as h —► 0. Then the method (2.1) is conver-
gent. Moreover, if the method is of order p and the starting errors satisfy 
ll^ll[a,tfc_ 1+»] =  ° ( hP) and IKII[a,7*_1+*] = ° ( hP) ash  0 then the order 
of convergence is also p, i.e. ||e*,|[j— b] =  0 (hp),h  —► 0.

The conditions given in the above theorem are minimal conditions which 
ensure the convergence of order p of the method (2.1). To obtain additional 
properties of this method such as, for example, smooth behaviour of the glo-
bal discretization error, we must impose rather strong assumptions about 
the functions / ,  <7, Y, (f>, if), c, and e, where e and e are solutions to variational 
equations defined below in the formulation of Theorem 2.2. Moreover, we 
must assume more about the initial errors and the method (2.1). This me-
thod is said to be of strong order p if 77(h) = 0 (hp+1) and v(h) = 0 (hp+1) 
as h —► 0. We have the following theorem:

T he o r e m 2.2 ([49], see also [52]). Assume that c/l(/) =  0(hp+1) and 
eh(t) =  0 (h p+1) as h —► 0 for t E [a, th-i+o], the method (2.1) is stable and
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has strong order p; and there exist a function u E Cn[a,b] such that 

ri(t,l,h) = hp+1u{t) + 0 (h p+2)

for t E [a, 6] as h —* 0. Assume also that the functions f,g ,Y , and e
are sufficiently smooth, where e and e satisfy the system of equations

e'(t) -  e(t) = -u (t ) , t e [a ,b ],

«(0 = ^ ( W ) . *"(•))«(•) + t e M l,
e(t) = e(t) = 0, te [a ,a } .

Then
(k(t) =  »*(<) -  Y (t) = A*f(i) +  0 (ftp+1), 
eh(t) =  z„(t) -  Y '(t) = hpe(t) + 0 (h p+') ,  

for t E [a, b] as h —► co .

This theorem forms a basis for local error estimation and stepsize and 
order changing strategies of many algorithm based on one-step methods and 
predictor-corrector methods. These algorithms will be discussed in Section 3.

3. Some problems of implementation of one-step and predictor- 
corrector methods. The solutions to (1.1) and (1.2) usually have disconti-
nuities in their derivatives at some points in the interval of integration which 
may lead to order-breakdown of numerical methods for these equations. It is 
therefore not surprising that most of the early efforts to develop fixed-step 
formulas which are analogues of discrete variable methods for ODEs were 
concerned with methods of low orders. Feldstein [32] in his doctoral dis-
sertation considered many different variants of Euler method for FDEs. He 
proved the convergence of this method for constant stepsizes and investi-
gated the asymptotic behaviour of the global discretization error. Further 
analysis of continuous extension of Euler method was given by Cryer and Ta- 
vernini [24]. Hornung [41] and Castleton and Grimm [21] considered some 
variants of Euler methods for DDEs of neutral type (including equations 
with statedependent delays).

Higher order methods for DDEs were first investigated by Zverkina [85]. 
She considered analogues of Adams-Moulton methods for ODEs and used 
the technique of correcting for derivative jumps to obtain high order of co-
nvergence. Tavernini [71-73] established convergence and order theory of 
one-step and linear multistep methods for FDEs which is the extension of 
the corresponding theory for ODEs (see [25, 38, 60]). In [74] and [33] this 
theory was further extended to include DDEs with state-dependent delays. 
Jackiewicz [43] established the convergence theory of general class of qua- 
silinear multistep methods for FDEs which unifies the convergence theory
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for one-step methods and linear multistep methods for these equations. In 
[44-47, 49] this theory was extended to NFDEs and in [52] to DDEs of 
neutral type with state-dependent delays.

In the papers mentioned above the convergence and order properties of 
numerical methods were investigated under the assumption that the ste- 
psize h of the method is constant. Moreover, it was usually assumed that 
the solution to the problem under consideration is sufficiently smooth. Since 
this is usually not the case, the efficient implementation of numerical me-
thods requires special techniques for accurate determination of the location 
of jump discontinuities (breaking points) in lower order derivatives of the 
solution. If these discontinuities can be predicted in advance, which is the 
case for example, for DDEs which are not state dependent

(3.1) f  y'(t) =  /(* , 1 e k b],
\y(t) = g{t), t e [ a ta],

a < a (t) < Z,then the interval of integration can be divided into subintervals 
on which the solution to (3.1) is sufficiently smooth and a numerical method 
could be employed with fixed stepsize on each such subinterval. To improve 
efficiency some step control strategy could be used between the breaking 
points or we could use the constrained mesh (see [10, 11, 13]), i.e. the mesh 
that includes the breaking points o f the solution and such that for any grid 
point ti the point a(ti) is again a grid point if a(ti) > a. This approach 
was mostly used for one-step methods (compare [10-13, 83, 84]). A different 
approach must be employed for equations for which the location of breaking 
points cannot be predicted in advance. This is the case, for example, for 
DDEs with state dependent delays

(3.2) f  y'{t) =  /(* , y(t), 2/(a (^ 2/W)))> t e k  
\y(t) = g(t), te [a ,a ],

a < a (t,y ) < t. Neves [61, 62] proposed a variable-step fourth order al-
gorithm DMRODE for the solution of (3.2) which is combination of the 
Runge-Kutta-Merson formula of the fourth order for ODEs and interpola-
tion formula of the third degree. In this algorithm only the “integration part” 
of the local discretization error was estimated, using the formulas from ODEs 
theory and the detection of jump discontinuities was left to the step-control 
mechanism based on this estimate. It was later demonstrated [63] that this 
approach is not always reliable and that the actual error can be badly unde-
restimated. (It was shown by the example that if the second derivative jump 
occurs 3/7  into the step, the local error estimator will return the value zero 
no matter how big the actual error is.) Behaviour of the same nature was 
also demonstrated in [63] for the generalization of the Runge-Kutta-Fehlberg 
formula coupled with an interpolation formula of the third degree. Similar
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conclusions were also reached for different algorithms by Arndt [4], de Gee 
and Jackiewicz [45]. The understanding of this phenomenon made it po-
ssible to take some corrective measures to make the local error estimation 
reliable. Two different approaches are proposed by Neves [63]. The first 
consists in comparing the approximate solution ^ (a ^ /j+ i, y/^fi+i))) com-
puted by the existing interpolation formula with the corresponding value 
obtained by extrapolation from mesh points outside the interval spanned by 
a(ti^Vh(ti)) and y/^fi+i)). The big discrepancy between this values
indicates that a crosses the previous jump point. Repeating the process of 
cutting the stepsize in half until this discrepancy is small would result in 
locating the approximation Ph to the previous jump point P  and it would 
make it possible to compute the approximation Qh to the new jump point 
Q. It was proved by Feldstein and Neves [33] that the new jump point Q is 
a root of even multiplicity m of the nonlinear equation

a(Q ,Y {Q )) = P,

where Y  is the solution to (4.2). Since Y and P  are in general, not known 
in advance, we solve instead the equation

® ( Q  hi Vh^Qh)} =  Phi

by some iterative technique. Assuming that the approximation yh to Y  is 
of order p and that the approximation Ph to a previous jump point is suf-
ficiently accurate, Feldstein and Neves [33] have shown that the computed 
approximation Qh to Q is, in general, of order Q(hp/ m) only. Therefore, if 
the multiplicity m is large, the order of accuracy of Qh can be low. Howe-
ver, it was demonstrated in [33] that this will not prevent the method from 
attaining the pth. order of accuracy on the whole interval [a, 6].

The above approach is based on theoretical results on the propagation 
of discontinuities in the derivatives of the solution Y to (3.2) described in 
[64]. There are initial attempts to describe such propagation for systems of 
DDEs (see [82]). This approach to location of breaking points cannot be car-
ried over, at least for the time being, to neutral DDEs with state dependent 
delays because of the lack of results on propagation of discontinuities in the 
solution to such equations.

The second approach proposed by Neves [63] consist in monitoring the 
occurrence of a current jump point by comparing the approximate solution 
yh(t) obtained by interpolation with the corresponding values obtained by 
extrapolation over the interval of the last successful step. Neves remarked 
that this approach can be used for ODEs with discontinuities. This approach 
seems to carry over also to NFDEs.

In the DMRODE algorithm by Neves [61, 62], the algorithm based on 
Runge- Kutta-Merson formulas described in [2], and the algorithm by Arndt
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[4], the principal part o f the local error consists of the local integration er-
ror and local interpolation error since both of these errors are of the same 
order. To get a reliable local error estimate both errors must be taken into 
account. However, employing the interpolation formula of order greater than 
the order of the underlying method for ODEs, in a sufficiently smooth situa-
tion, the principal part o f the local error consists only of the local integration 
error, since the local interpolation error is of higher order. This was already 
observed by Oppelstrup [66] and employed in his RKFHB4 algorithm based 
on Runge-Kutta-Fehlberg formulas of orders 4 and 5 and Hermite-Birkhoff 
interpolation of degree 4. However, even in this case it is recommended to 
monitor the local interpolation error because it can be dominant for lar-
ger stepsize. Similar ideas were used for RKFR4 and RKFR7 algorithms 
by Oberle and Pesch [65], a variable step algorithm [52], based on fully 
implicit one-step methods discussed in [47], with local error estimated by 
local extrapolation, a variable-step algorithm [49], and variable-step varia-
ble order algorithms [50, 51, 55] based on Adams-Bashforth Adams-Moulton 
predictor-corrector methods with local error estimated by Milne’s device. As 
shown in [49], local error estimators based on Milne’s device are asymptoti-
cally correct in a sufficiently smooth situation. This follows from the results 
on the asymptotic expansions of the global discretization error (compare 
Theorem 2.2). Unfortunately, when the solution to (1.1) or (2.1) has deriva-
tive jumps these estimators are not always efficient. To deal with derivative 
discontinuities the following approaches are possible. One consists in inclu-
ding the jump points in a mesh and using smooth formulas to interpolate the 
delay functions on the whole interval [U,U+i]- This procedure, which makes 
the local error estimators asymptotically correct, was employed by Oberle 
and Pesch [65], Bock and Schloder [17], and Arndt [4] for DDEs. Unfortuna-
tely, this procedure is not applicable to NFDEs with state dependent delays, 
for which the propagation of jump points is not known. Another approach 
was proposed recently by de Gee [26] for predictor-corrector methods with 
local error estimated by Milne’s device. This approach, applicable also to 
ODEs, can be briefly summarized as follows. Denote by su,u = 1,2 
the jumps in the p + 1  derivative of the solution Y  to (4.1). Then, as shown 
in [26], the local error 6h at the point t of linear multistep method of order 
p with error constant Cp+1 is given by

«fc(t) = Cp+1h»+'Y ^+lHt) + h”+1 7((< -  s„)M)4,’’+I) + 0(*',+2),
V

where the sum is taken over all v such that s„ < t. Here, denotes
the jump of y(P+D at su and 7 is some function which depends on the co-
efficients o f the linear multistep method. The plots of 7 are given in [26]. 
Denote by Ck+iil^Vh and Ck-\-i,'y,Vh the quantities corresponding respec-
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tively to Adams-Bashforth predictor and Adams-Moulton corrector of the 
same order k. Then, as shown in [26], Milne’s device takes the form

(3.3) Ck+1 (yh(ti) -  M i ) )
Ck+1 ~ Ck+1

= hk+1 [c^y e+D f/.)

+ Y,Ck+i— i - -S,')/h ~ i ((ii ~ + 0(hk+2).
„ C k+i -  Ck+i J

This result means that Milne’s device, instead of monitoring the local di-
scretization error 8h(ti) o f predictor-corrector method

M i )  = A*+1 [cfc+iy (*+1)(fi) + J2+(ti -  «„)//i)4*+1>l + 0(ft<fc+2»),

monitors the quantity on the right-hand side of (3.3). Comparing the 
graph of 7 with the graph of Ck+ i{l  -  7)/(Ck+i -  Ck+ i ) (see [26]), we 
see that Milne’s device does detect the jump in y ( fc+1), but one step later 
than it should. This observation can be used to modify the step-changing 
strategy based on Milne’s device. After a rejected step from ti to U+1 it is 
recommended that the previous step from C_i to C, which can contain the 
jump in y(p+1), also be rejected, and the integration started with decreased 
step from t i - i .  A similar strategy was also recommended by Gottwald and 
Wanner [36] for Rosenbroch methods for stiff systems of ODEs.

As mentioned above the algorithms for the numerical solution of FDEs 
and NFDEs based on predictor-corrector methods with local error esti-
mation based on Milne’s device have been presented in [50, 51, 55]. The 
algorithm described in [50] is based on, using the terminology of Sham- 
pine and Bogacki [68], quasi-constant stepsize implementation of Adams 
formulas. This means that we are using Adams-Bashforth predictor and 
Adams-Moulton corrector of the same order with constant coefficients to 
advance the step from /, to t{+1 =  t{ +  h;, while all necessary back va-
lues at ti — hi,ti — 2/ij-,. . .  ,ti — khi, are computed by interpolation. On the 
other hand the algorithm described in [55] is based on fully variable stepsize 
implementation of Adams formulas. This means that the coefficients of un-
derlying formulas are defined for the nonuniform mesh and must, in general, 
be recomputed at every step. This leads to significant overhead, especially 
for systems of DDEs of low order. The corresponding error constants of 
Adams-Bashforth and Adam-Moulton formulas, which appear in Milne’s 
formulas for error estimates, depend only on the order which is used to ad-
vance the step in case of algorithm [50]; they depend on the order and the 
sequence of stepsizes in case of algorithm [55]. This means that in the latter 
case these “constants” must be recomputed, in general, at every step which
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further increases the overhead of this method. However, the extensive nume-
rical experiments presented in [55] demonstrate that the algorithm based on 
a fully variable stepsize implementation of Adams formulas is more accurate 
and much more reliable than the algorithm based on quasi constant stepsize 
implementation of these formulas. These numerical experiments were perfor-
med on a broad spectrum of test examples ranging from single DDEs with 
constant delays and DDEs of the second order, to VIDEs. They include 
real-life examples from many areas of science as those listed, for example, in 
Oberle and Pesch [65] and Bellen and Zennaro [13]. These experiments de-
monstrate that the stepsize and order changing strategy based on estimation 
of local error by Milne’s device can automatically detect the discontinuities 
in the solution and reduce its stepsize and order accordingly to pass it, the 
stepsize and order are increased automatically later on until the next di-
scontinuity is detected. The typical graphs of stepsize versus abacissa and 
order versus abacissa are presented in [55]. These graphs illustrate that the 
dependence of stepsize and order on abacissa may be very erratic with many 
rejected steps which results in increased cost of computations. Therefore, it 
seems reasonable to combine the algorithms [50, 55] with some method of 
locating discontinuities; once the location and order of the discontinuity are 
detected, the method should step to it and restart. The methods of loca-
ting discontinuities are discussed, for example, by Stetter [70] or Gear and 
0sterby [35] in the context of ODEs, by Tavernini [75, 76] for FDEs, and 
by Feldstein and Neves [33] for DDEs with state-dependent delays.

Recently, a new approach to the implementation of Runge-Kutta me-
thods for ODEs has been proposed by Enright [30, 31]. Since this approach 
has the potential of applications to FDEs and NFDEs we will briefly de-
scribe it below. Assume that the discrete solution obtained by Runge-Kutta 
method has been extended by some local interpolation scheme to the whole 
interval of integration. Local means that the interpolation polynomial on the 
interval [<,-,£j+i] is defined only in terms of quantities computed at this step 
so that the one-step nature of Runge-Kutta methods is preserved. The eva-
luation of these interpolants may entail additional computational cost but 
they provide an approximation yh which is defined on the whole interval of 
integration. Define the local defect 8 by

W  =  y'htt) ~ /(<> Vh(t)), t G [U, L+i].

This is the amount by which yh fails to satisfy the original problem. The new 
error control and stepsize changing strategy proposed by Enright [30, 31] is 
based on monitoring and attempting to bound the local defect rather than 
the local discretization error on each step to integration. He demonstrated 
that the approximate solution yh computed by using this strategy satisfies 
exactly an initial-value problem which is small perturbation of the original
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problem. As a consequence, the relationship between the error —Y  and 
the tolerance used to bound the local defect depends only on the sensitivity 
of the original problem but is independent of the numerical method. This is 
the main advantage of this approach— separation of the numerical stability 
of the method from the mathematical conditioning of the problem. In [31] 
Enrigth defines and compares different strategies for estimating the local 
defect 6. Enrigth’s approach was further modified and improved by Higham 
[39] who constructed interpolants for Runge-Knutta methods for which the 
asymptotic behaviour of the corresponding defect is known a priori. These 
interpolants were constructed following the approach of [30, 31] and the 
corresponding local defect S on [f j,/;+1] has the form

S(U + rh) = h ^ (r )K  +  0 ( /ip+1), r G (0, 1],

where p is the order o f the method, K  is some constant independent of r and 
h and <j> is some polynomial. It follows from this relation that we can estimate 
6 by sampling at the point r* which maximizies |</>(r)| over [0, 1] and this 
process is optimal for any problem. In further report [40] Higham applied 
Enright’s approach to Adams’predictor-corrector methods. He has conside-
red variable-step variable-order code due to Shampine and Gordon [69] with 
local interpolant defined by Watts and Shampine [79] and he has shown that 
the shape of the associated defect is determined only by the local stepsize 
pattern. As a consequence, also, in this case, the defect 6 over [fi,/i+i] can 
be estimated by sampling at a single point He has proved that for
k = 1, r* = -  and for k > 2, r* is the solution in (0, 1) of the equation

r (r _ 1 ) f ^2r ~ a•?’
where oj =  — ti)/h, j  = 2 ,3 , . . . ,  k, define the stepsize pattern.

Application of Enright [30, 31] technique requires the development of in-
terpolants which can be associated with discrete approximations generated 
by numerical methods. For this reason this approach seems to be ideally sui-
ted for FDEs and NFDEs since, by the nature of the problem, the numerical 
approximation must be generated on the whole interval of the integration 
anyway. Since the definition of the local defect S is affected both by the 
formula to advance the step and the corresponding interpolation scheme, 
this step control strategy should be more reliable than the strategy based 
on the estimation of the local discretization error alone.

We conclude this section by mentioning the recent algorithm by Wiener 
and Strehemel [80] which can automatically detect stiffness in DDEs.

4. Stability properties of numerical methods for FDEs and 
NFDEs. To investigate stability properties of numerical methods for (1.1)
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and ( 1.2), these methods are usually applied, with a fixed positive stepsize 
h, to various test equations with known region of stability. The simplest test 
equation is

t  > 0, where 6 is real, and it is known (see Bellman and Cooke [14]) that 
the solution to this equation tends to zero as t oo for all g if and only if 
6 G ( —7r /2r, 0). The numerical method, with stepsize h = r/ra , where m is 
positive integer, which inherits this property is said to be D.4o-stable and 
Cryer [23] gives some necessary and sufficient conditions for linear multi- 
step method to be D^o-stable. He also introduced a more general notion of 
GDj4o-stability which relaxes to condition h = r/m to h = r /(m  — w), where 
u E [0, 1), and investigated the properties of linear multistep methods with 
respect to this concept. Barwell [9] generalized some of Cryer’s results to the 
case where b is complex and also considered a more general test equation

with a and b complex. He introduced the notion of Q— and GQ— stability 
related to (4.1) (with b complex) and P — and G'P-stability related to (4.2) 
which are analogues of Cryer’s concepts of D/lo- and GD/lo-stability and 
investigated stability properties of some simple multistep methods coupled 
with Lagrange interpolation. Still more general concepts of stability with 
respect to (4.1) were introduced by van der Houwen and Sommeijer [78] and 
stability criteria were derived for a class of linear multistep methods.

Stability analysis of numerical methods for DDEs is difficult since it is 
necessary to consider difference equations of arbitrarily high order. To illu-
strate this point suppose that the linear multistep method for (3.1)

/ ^ 2 j=0 ̂ j V h i ^ i + k —j  ) —  h  T .  j —n f ( t j + k —i ; l ) h { ^ i + k — ?) ? y h ( ® ( t j + k  — .?)))?

\ 2//i(^) =  & C [fo G ô])
i =  0 ,1 , . . . ,  coupled with Lagrange interpolation of sufficiently high order, 
and stepsize h = r/m, where m is a positive integer, is applied to (4.2). 
Here, ti = a -f ih, i =  0 ,1 , . . . ,  ?//*, is an approximate solution, and g/1 is an 
approximation to g. This leads to the difference equation

(4 4) /  ^2j=0 ajVh{ii+k-j) =  h £ j = 0 0 j{ayh(ti + k - j ) +  byh{ti+k-j-m)i
\ y/i(^) =  y/i(^)}  ̂ £ [<0 g ô]?

i =  0 ,1 , . . . ,  o f order m +  k. Now in order to establish some stability pro-
perties of (4.3) we should be able to decide whether or not the solution 
yh of (4.4) is bounded (or tends to zero as t oo). This is, in general, a 
nontrivial task and first results in this area were obtained only for simplest

(4.1)

(4.2)

(4.3)
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numerical methods. Barwell [9] established P — and GP-stability for first 
and second order backward differentiation methods and Jackiewicz [48] and 
Calvo and Grande [20] determined stability regions for 0-methods. Similar 
results with respect to the test equation (4.1) were obtained by Cryer [23] 
and Barwell [9]. Cryer proved that the 0-methods are TMo-stable if and 
only if 0 G [|-, 1] and that the Backward Euler method and the trapeizodal 
method are GZMo-stable. Barwell proved that the Backward Euler method 
is Q-stable and conjectured that it is G'Q-stable. For more general methods 
some stability results were established by Wiederholt [81], Al-Mutib [1] and 
Oppelstrup [66]. Wiederholt determined numerically (via boundary locus 
method) the set of all (ha,hb) such that y  ̂ given by (4.4) tends to zero as 
t —► oo for second order Milne predictor-corrector method and third order 
Adams predictor-corrector method for m — 1,2 and 3. Similar results were 
obtained by Al-Mutib for the Runge-Kutta-Merson method, the trapezium 
rule and the fourth order implicit Runge-Kutta method. Oppelstrup investi-
gated stability properties of Runge-Kutta-Fehlberg method combined with 
Hermite-Birkhoff interpolation with respect to the test equation (4.1).

More general test equations for FDEs were considered by Bickart [15,16], 
Brayton and Willoughby [18], Fox, Mayers, Ockendon and Tayler [34], Kato 
and McLeod [58], Bakke and Jackiewicz [5], and Torelli [77].

A breakthrough in the stability analysis of numerical methods for DDEs 
came with the paper by Roth and Watanabe [67] and, especially, by Zennaro 
[84]. Roth and Watanabe [67] introduced the technique based on argument 
principle which directly relates the region of absolute stability for DDEs cor-
responding to a y(t) term with the region corresponding to the delay term 
by(t — r). Following [67] we will illustrate this technique for backward Euler 
method for (3.1). This method takes the form

(4.5) yh(ti-1 +  rh) =  yh(t i -1) +  rk f(ti,yh(ti), yh(a(ti))),
i = 1 ,2 , . . . ,  r G (0,1]. An application of this,method to (4.2) with h = r/m , 
where m is a positive integer leads to the difference equation

(4.6) yi = +  h(ayi +  0y,_m),

i =  1 ,2 , . . . ,  where yi :=  yh(ti)- The method (4.5) is said to be P-stable if 
the solution { 2/i} ^ 0 to (4.6) tends to zero as i —> oo for any (ha, lib) such 
that |6| < —Re(a). This condition means that the approximate solution 
{t/i}°^0 tends to zero as i —> oo whenever the theoretical solution Y(t.) to 
(4.2) tends to zero as t —> oo.

The characteristic polynomial of (4.6) is where

0 (£) =  C l -  £m-1 -  haim -  kb.
A necessary and sufficient condition for asymptotic stability of the solution 
to (4.6) is that all in roots of the polynomial <f> lie within the unit circle.
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To investigate the location of roots of this polynomial it is convenient to 
introduce the rational function

g( 0  = -171 ( 0  + 1/2(0  = - ( ( ^  + i) -  A«) +

which has a pole of order m at the origin and m zeros at unknown loca-
tions. The loci o f g\ and for £ on the unit circle are circles with centres 
at 1 — ha and 0 and radii 1 and h\b\. The locus of the function g\ is the 
boundary of the region of absolute stability of the backward Euler method 
for ODEs displaced by —ha. Thus this approach relates directly the stability 
region for ODEs with the region corresponding to the delay term. It can be 
checked that if |6| < —Re(a) then the loci of g\ and </2 are disjoint and, as 
a consequence, the change of argument of </(£) as £ traces the unit circle 
is zero. Hence, by the argument principle, all zeros of g lie within the unit 
circle, which proves that the method (4.5) is P-stable.

This technique was used in [67] to show that for every A-stable, A(o)-sta- 
ble, or stiffly stable linear multistep formula for ODEs there is a correspon-
ding formula for DDEs with analogous stability properties.

Zennaro [84] investigated stability properties of Runge-Kutta methods 
for DDEs (3.1) with delay function a(t) = t — r, r > 0. These are the 
methods of the form
(4.7)

f Vi+l =  Vi +  h Y,r=l Wr&i+I,
1 &i+l =  f(U  +  Crh, Vi +  h £ a = l <trsk$l tyi-m +  h ^ s= l brSk\S] m+1), 

r = 1, 2, . . . ,  v, i =  0, 1, . . . ,  where wry « r)S, 6r)S are real coefficients and 
cr =  E s = i ar,s- Put w =  [u q ,.. .,w u]T,A  =  [ar, J^a=i , 5  =  [&rX)S=r We 
refer to (4.7) as {w ,A ,B }  method. Zennaro showed that the application of
(4.7) to the test equation (4.2) leads to the vector recurrence relation

(4.8) Yi+i — LYi +  MYi- m+1 +  iVyi_m,

i = m ,m -f  1, . . . ,  where Yi := [y*, hkf]1 , k{ := . . . ,  k\û ]T, and where
X, M  and N are the following (y -f 1) X (u +  1) matrices:

L :=  

M :=

l +  ag 0 .. .0
a (I — a A )-1 M 0

'0  f3iuT(I — aA)~l B~ 
0
: f3(I — aA)~l B

.0

N := (1(1 - a A ) ~ l u
0. . .0

0
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Here, a = ha, (3 =  hb, u =  [1, 1, . . . ,  1]T and r] := wT(I — a A) l u provided 
I  — aA  is nonsingular. The characteristic equation of (4.8) is

det(Am+1/  -  A1X1L -  AM -  N) = 0

To investigate the location of roots to this equation Zennaro [84] introduced 
the rational function

ra(z ) :=  1 +  (cv -f z)wT(I  — aA — zB)~l u,

which depends on a. This function is a generalization of stability function 
R(a) =  ra(0) =  1 +  awT( 1 — aA )-1 u of Runge-Kutta method {iu, A} for 
ODEs. Zennaro’s technique is based on the nontrivial observation that un-
der some technical conditions the nonzero roots to (4.8) are the same as the 
roots to the equation A =  ra(/3/Xm) which is easier to investigate.

Put r a := {z  : |7*a(z)| = 1} and define aa \= inf { |̂| : z G r a}. The main 
result of [84] is the following.

T h e o r e m  4.1. Assume that the matrix I —aA —zB is singular if and only 
if z is a pole of ra. Then the interior of the region of stability of the method 
{w ,A ,B } with respect to (4.2) (i.e the set of all points (a,/3) = (ha,hb) 
for which the roots to the equation (4.8) or , equivalently, to the equation 
A =  ra(-^ -) are inside of the unit circle) is given by

{ (a ,(3 ) :a £ S A  and \(3\ <
where Sa  is the region of absolute stability of the Runge-Kutta method 
{w , A} for ODEs.

The following important result can be concluded from this theorem.

T h e o r e m  4.2 (Zennaro [84]). Assume that the condition given in The-
orem 4.1 hold and that {w ,A } method for ODEs is A-stable. Then the cor-
responding {w, A , A} method for DDEs is P-stable.

Zennaro’s technique has been extended by Bellen, Jackiewicz and Zen-
naro [12] to Runge-Kutta methods for neutral DDEsof the form

(a q\ /  y\t) = -  r),y'(t -  r)), t > o,
1 } \ y (t) = g (t)t * e [ - r , 0],
r  > 0. The stability analysis is based on the test equation

f y'(t) = ay(t) +  by{t -  r ) + cty'(t -  r), t >  0, 
\y(t)  = g(t), * € [ - r , 0],

where a, b and c are complex parameters. The following result was proved 
in [12] about the asymptotic behaviour of solutions to (4.10).

T h e o r e m  4.3. Assume that \ac — 6| +  |ac -f b\ <  —2Re(a). Then every 
solution to (4.10) tends to zero as t —»• oo.
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If a, b and c are real then the condition |ac—6| + |«c-f 6| < —2 Re(a). is equ-
ivalent to the conditions |6| < — a and |c| < 1. This is the essence of the result 
by Brayton and Willoughby [18]. If a,b are complex and c = 0 then the hy-
pothesis of the Theorem 4.3 reduces to |6| < — Re(n) which gives a sufficient 
condition for the stability of the test equation (4.2), compare Barwell [8].

Consider the following />stage Runge-Kutta method for the problem
(4.9)

(4.11)
r Vi+1 =  Vi + h i WjZ(i+1,

^i+i — fit* d* cjK yi  +  h E L i  ajsz\+i->( s )

v . - 4 -h V p b V p r z(s) )i h - m  t  u* 2_/s= 1 1 ’ Z ^ s= 1 Lj s z i - m + l / ’
(*)

j  = 1,2 where Cj =  E s= i ajs- Here, the vector w = [id j , . . . ,  wp\T,
and the matrix A = [«js]^5=1 define a Runge-Kutta method for ODEs.
Put B = [bjs]p S=1,C  = [cjs]j s=i- Then the Runge-Kutta method (4.11) for
(4.9) can be described by the quadruple {w, A, B ,C }.

Denote by {y^m , ha, hb,c)}°l0 the sequence obtained from applying the 
method (4.11) to (4.10) for a given value of positive integer m and h = r/m. 
The method (4.11) is said to be stable for given (ha,hb,c) if the sequence 
{yi(m,ha,hb,c)}^Z0 tends to zero as i oo for any integer m > 1. The 
region of stability of (4.11) is the set of all values (ha, hb, c) for which (4.11) is 
stable. This method is said to be NP-stable if the region of stability contains 
the set {(ha, hb,c) : \ac — b\ -f |ac +  6| < —2Re(a)}. This condition means 
that the approximate solution {yi(m, ha, hb, c ) }^ 0 tends to zero as i —> oo 
whenever the theoretical solution Y(t) to (4.10) tends to zero as / —> oo.

Put a = ha, (3 =  hb, q =  and consider the rational function

ra,q(z ) :=  1 +  (a  +  qz)wT(I -  aA -  z(qB + C)) 1u,

where u = [1, 1 , . . . ,  1]T. This function is generalization of stability function 
ra(z ) of Runge-Kutta method (4.7) for DDEs. Define the curve

r a,q := {z  6 C : \ra,q(z)\ = 1}

and put

Va,q :=  inf{\z\ : z € Ea>g}.
We have the following characterization of stability region of Runge-Kutta 
method (4.11).

T he o r e m 4.4 ([12]). Assume that the matrix I  — aA — z(qB +  C ) is 
singular if and only if z is a pole of ra q̂. Denote by Sa the (open) region 
of absolute stability of the Runge-Kutta method {w,H}  for ODEs. Then the 
interior of the region of stability of the Runge-Kutta method {w ,A ,B ,C }
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for (4.9) is given by

{ (a , (3 ,c): a £ Sa  and |c| < cra,q} •

The next theorem deals with the special case of the method (4.11) for 
which B = A and C =  I, where I  is the identity matrix.

T h e o r e m  4.5 ([12]). Assume that the condition given in Theorem 4.4 
holds. Then the interior of the region of stability of the Runge-Kutta method 
{w, A, A ,I }  for  (4.9) is given by

{(«>/?» c) :a  £ SA and\c\ < inf{\z\ : G dSA} }  ,

where dSA stands for the boundary of the region SA.

The following important result can be concluded from Theorem 4.5.

T h e o r e m  4.6 ([12]). Assume that the Runge-Kutta method {it;, A } for 
ODEs is A-stable. Then the corresponding method { w, A, A, 1} for (4.9) is 
N P-stable.

The technique presented in [12] was also used to investigate stability 
properties of fully implicit one-step methods for NFDEs (1.2) introduced in 
[47]. These are the methods of the form

(4.12)
' Vh(U +  rh) =  yh(ti) +  h £ ? =0 aPj(r )zh(ti + tfh), r G (0,1], 

< zh(U + rh) = Y^Pj i 10 lPj +1(r)zh(ti + bpj +1h), rG (0,1],
k Zh(U +  rh) = f h{ti +  bpj +1h, 2to(-), zh(-),

i =  0 , 1 , . . . ,  JV -  l ,N h  = b -  a ,yh(t) =  gh{t),zh(t) = g'h(t),t G [a, a]. Here, 
fh is a discrete approximation to / ,  g  ̂ and g'h are approximation to g and 
g ', bp and bp+1 are distinct points from the interval [0, 1], and

aK r) =  /  lj ( s)d*i 
o

where lq- are Lagrange’s fundamental polynomials

We have the following theorem.

T he o r e m 4.7 (compare [12]). Assume that the method (4.12) applied to 
ODEs is A-stable. Then this method is NP-stable.

It is known that if bq- are chosen to be, for example, the Lobatto points for 
[0,1] then the method (4.12) applied to ODEs is A-stable. Therefore, it fol-
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lows from Theorem 4.7 that in such a case this method is AP-stable. As di-
scussed in [12] the choice of b̂ +1 does not affect stability properties of (4.12).

5. C on clu d in g  rem arks. In our review we concentrated mainly on the 
methods for FDEs and NFDEs which are analogues of discrete variable me-
thods for ODEs. Moreover, while discussing specific problems of implemen-
tation of these methods and their stability properties we considered mainly 
methods for special cases of (1.1) and (1.2), such as DDEs, neutral DDEs 
and DDEs with state dependent delays. Other approaches to the numeri-
cal solution o f these equations have been considered in the literature. De 
Gee [27] discussed extrapolation methods for DDEs. Amillo-Gil [3], Banks 
and Burns [6], Banks and Kappel [7], and Kappel and Kunish [57] consi-
dered approximation techniques for DDEs based on Kato-Trotter theorem 
for semigroups of operators. Fox, Mayers, Ockendon and Tayler [34] and Ito 
and Teglas [42] examined some numerical techniques for DDEs based on 
the Lanczos-Tau method. To make this paper of reasonable length we have 
decided not to address these developments here in more detail.

Another important special case of (1.1) and (1.2) are VIDEs. The recent 
book by Brunner and van der Houwen [19] presents the state-of-the-art in 
the numerical solution of Volterra equations up to the year 1986 and for 
this reason we did not address here specific implementation and stability 
problems in this area.
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