PL EN

Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo

## Mathematica Applicanda

1982 | 10 | 20 |
Tytuł artykułu

### Superconvergence in the finite element method

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For some variants of the finite element method there exist points having a remainder value or a derivation remainder remarkably less than those given by global norms. This phenomenon is called superconvergence and the points are called superconvergence points. The generalized problem corresponding to (1) is as follows: Let Hk(Ω) be Sobolev space and Hk0(Ω) the completion of the space C∞0(Ω) with norm ∥⋅∥k,Ω. Find u∈H10(Ω) such that for each v∈H10(Ω), (2) a(u,v)=(f,v)0 holds, where a(u,v)=∫Ω(∑n|α|=0aα(x)DαuDαv)dx, (f,v)0=∫Ωf(x)v(x)dx, Dα=Dα11⋯Dαnn,1.5pt Dαiiu=∂αiu/∂xαii, i=1,n¯¯¯¯¯¯¯¯. The approximate problem of the finite element variant considered is the following: Find uh∈Vh such that (3) for all v∈Vh, a(uh,v)=(f,v)0. The main result is the theorem: Let ai∈C(Ω¯), D1ai,D2ai∈L∞(Ω),i=1,2,∥σ∥∞L(Ω)≤σ,f∈L2(Ω). Suppose the eigenvalues of the operator L are different from zero, and u∈H4(Ω)∩H10(Ω). Then there exists h0 such that for h≤h0, h2∑P∈G|grad(u−uh)(P)|≤Ch3(|u|3+|u|4), where u and uh are the solutions of problems (2) and (3), respectively, and C is some constant independent of h. Further, |u|k={∫Ω(∑|α|=k(Dαu)2)dx}1/2, G=⋃N1N2i=1Fi(R), R={(±3√/3,±3√/3)} is a Gauss point set in the quadrant S={(ξ1,ξ2):|ξk|≤1,k=1,2}, and Fi(F(1)i,F(2)i):S→ei, ei an element; F(1)i(ξ1,ξ2)=x(i)0+h1ξ1/2, F(2)i(ξ1,ξ2)=y(i)0+h2ξ2/2, and (x(i)0,y(i)0) is the middle element.
PL
MR0707821
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
Daty
wydano
1982
online
1982-12-01
Twórcy
autor
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ojs-doi-10_14708_ma_v10i20_1458 JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.