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Construction of the fundamental solution
for the equation 4*u(X)+ku(X) =0

1. The purpose of this paper is an effective construction of the fun-
damental solution for the equation

1) Au(X)+Fu(X) = 0,

k # 0 being a constant, X = (a,, ..., 2,), in the two, three and n-dimen-
sional case.

In the literature, construction of fundamental solution for the Helm-
holtz equation Au+ ku = 0 is known ([1]). It seems, however, that the
case of the equation (1) was not dealt with till now. The equation (1) is
very important in the elasticity theory.

In the second Section we deal with the solutions of the equation (1)
depending only on the distance r of two points, and we solve the (ordinary)
differential equation to be satisfied by those solutions. Then in Section 3
we determine effectively the fundamental solution for k < 0, say ¥ = —C*,
and n = 2. In the Section 4 we do the same for k = C*, k = —C*, n = 3.
In the Section 5 we effectively construct the fundamental solution for
n >3 and k = —C*% in the Section 6 a construction is given for k = (%,
n =2, and in the Section 7 we deal with the case n >3, k= C"
In the last Section 8, we apply the obtained fundamental solutions
to solve the boundary problems of Lauricelli and of Riquier for
the equation (1).

2. Now we shall give the ordinary differential equation to be satisfied
by each solution of (1), dependent only on the distance of two points.
Let
n
0*u(X)

1,7=
and let X (@1, ...,2,.), Y(¥1,...,¥,) be two different points in the n-di-

n
mensional space, and let r = XY = [ 3 (@~ 5:)°]"*.
i1
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We shall need the

LreMMA 1. Let the function u(X) = U(r) be a solution of the equation
(1), let U(r)eC* for r > 0, then the function

(2) V) =+rU(r), r>0
ts the solution of the equation
(3) V)t (2n—6)r*VO(r)+ (nP—10n+21)r* VO (r) 4
+3(—n —{—Sn 15)1‘7 (r)+3(n*—8n+15)V(r)+kr*V(r) = 0.
Proof. Since
AU(r) = U (r)+(n—1)r"1U(r),
AU (r) = UDr)+2(n—1)r" ' UO ()& (n—1) (n—3)r~2U"" (r) +-
+(n—=1)(3—n)r*U’(r),
each solution of the equation (1) is also a solution of
4)  TO0)+2(m—1)r'TO0)+(n—1)(n—3)r *U" (r)+
+(n—1)B—=n)r*U' (r)+ kU (r) =
In virtue of (2) '
U'(r) =r V') —rV(r),
U"(r) = r V" (r)—r722V (r)+r732V (),
UO(r) = v V7O @) — 28V (1) L 736V (r) —r %6 V (),
U9 (r) = r VO (r) — ¢ 24VO () 4 v~ 312V () — 924V (r) + #~524 V (1),

(5)

whence by substitution of U”, U®, U® from (5) into (4) we obtain (3).

In the Sections 3-6 we shall give fundamental solutions in each of
the cases n = 2,3 and n >3 and k = (' k = —C* separately.

DrriniTION 1. A function U(r) is called a fundamental solution of (1'):
Au(z, y)—C*u(z,y) = 0, if 1° U(r) U(XY) is defined and of class C*
in the set {(X, Y): X # Y}, 2° U(r), considered as function of X or of ¥
only, satisfies the equation (1’), 3° for each function v(X) of class C®
in bounded region D and C® in D, satisfying the equation (1°)

1 ddv  dU dv dAU
6) v@,9) = — 55 f(U = —WAv+AU7_T_@) .
aD
for each XeD, if n = 2, and
dAv dU dv  dAU
(6a) v(X) = —-—ff an in v)dSy

if » > 2, a, being a normalizing constant, depending of n.
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3. Let us first consider the case n = 2, k = —(*. Each solution
dependent only on r satisfies in our case the equation
1) Au(@, y)—Clu(w, y) = 0.

The equation (1’) is of form (4—C?)(4-+0%)u = 0.
We shall prove

LEMMA 2. Every solution u(x,y)eC® of the equation
(7) Au—C?u = 0
or
(8) Au4-Cu = 0
respectively, is also a solution of (1
Proof. It follows from (7) that A2u(m, y) = C?Au(z, y) = Cu(x, y),
and from (8) it follows that A%u(z, y) = —C?4u(z, y) = —C? (—Cu(x, y)
= C'u(z, ¥)). '
We shall find (fundamental) solutions of (7) and (8) by means of
which we shall construct the fundamental solution of (1’). The funection

U(r) depending on the distance r = X Y satisfying the equation (8)
satisfies also the equation

(9) U’ (r)+r1U' (r)4+C2U(r) = 0.
By the change of the independent variable

(10) R = Cr,

we obtain the equation

(11) R*U"(R)+RU'(R)+R2U(R) = 0,

which is obviously the Bessel equation with the parameter s = 0 ([3]).
The function

1 o (—1)?(Rj2)? R
22 Ty -yer),

e

(12) : U](R) = YO(R)
where

1 1 ,
flk+1) = -y+1+—2—+...+—lz, f(1) = —y, y the Euler const.

is a solution of the equation (11) ([3]).

We conclude from (9), (10), (11), (12) and from Lemma 2 that the
function Y,(Cr) is the solution of the equation (1’).

The function U (r) satisfying the equation (7) satisfies also the equa-
tion '
(13) U’ (r)+r2U (r)—C2U(r) = 0.



216 . J. Musialek

Replacing in the eqﬂation (9) Ci by C we obtain the equation (13). Con-
sequently the function Re Y,(Cér) is a solution of the equation (1').
In all the formulas to follow the symbols O(1), O(r), O(g(r)), ¢(r)
being a function of », will refer to the case r — 0.
Now we are able to prove

THEOREM 1. In case n = 2, k = —C* the function

(14) U(r) = Uy(r)—Usx(r)
where
Uy(r) = Yo(0r), U,(r) = ReXy(Cir)

is the fundamental solution of the equation (1').
Proof. From (12) it follows that

Cir _2_2001(—1)"(0727"/2)2"

YO(C@'T) = —_JO(OM')IHT - L (k)2 f(k+1)9
where
, o1 (—1)F(Cirj2)* = (Cr [2)%
(15) To(0in) = Y =1 Z o

From (15) we get
(16) Y, (Cir)

2 = (Or[2)* Or w2 \(Or2)*
—?(“'Z(Tz)r)(‘n?“?)“;g @y JE

k=1
and
. . 2 Or
amn) ReY,(Cir) = ——ln7 4+ L, (r),
- s
where

fk+1) = 0(1).

2 Or (02 2 < (Orj2
nln'?kﬂ (k)2 "?Z (k12

From (12) we obtain

as) ¥y(0n) = 2w 7 4 I,
where
ks k 2k ind 2k
L) = 2w N D@7 2 (VO = 0q).

n 2 (k)2 nko k')2
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¢

In virtue of (14),"(1’_7) and (18)

(19) U(r) = Lu(r)—~Ly(r) = 0(1)
and
(20) U"(r) = T(r) —Ti() = 0Q1).

By (7), (8), (14), (17) and (18)
' 4
(21) AU = AU, — AU, = —C*U,—C2U, = —C? (-m%ﬁ —1—1}3(7")),
™

where L;(r) = O(1).
From (21) it follows that
' d 4()2
— AY(r
(22) e (r) =
where I,(r) = Ly(r) = O(r).
Let v(x,y) by a function of class O in D satisfying the equation
(1’) and let Kz be a circle with the centre X and with radius R. Applying
the fundamental formula ([3])

(r),

aa o aAT av
ff(UA%——v,A?U)dwdy - f(UJ +AU—”——v — do dn)
D

ds v
KA dn an

to the functions U{(r) and »(x, y) in the set D—Kpg, we get

(23) ff(U(r)A%(iY)—v(Y)AZU(r))dsdn

DIRp

= — f (U(r)-d—Av(Y)—.-v(Y)—d—AU(T))dé’y——
dD-KpR) dn dn

d d
— f (AU(r)%v(Y)——Av(Y)d—n U(T))dSY.

oD-Kp)

Since U{(r) and v»(Y) satisfy the equation (1’), the left-hand side
of the formula (23) is equal to zero. Therefore it follows from (23) that

adv aqau dv au
277 AU — — Ap——
(24) a!(U Tn v i + U Avd )dsy—}—

i/ aAT
fUsty~ f——Avdsy+ fAU——dsy— f vdsy = 0.
KR dn .

By application of the mean value theorem to the curvilinear integrals
in the formula (24) we get in view of (19), (20), (21) and (22)
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Av(Y 14
J, = fU(r)M(——ldsy = oy (R) TA0W@) _
e dr dr
R
= (Lz(R)—Ll(R))2nR—dATQ;(Q)— — 0 when R — 0, QedKpg,
d
Iy = fAv(Y UM sy = 2RA0(Qy) dU(R)
oK d
R
= 2rRAv(Q,) (Ly(R)—L;(R)) - 0 when R — 0, Q,¢0Kg,
(25)
- (Y 402 d
Jo= | aUwm) oY) gy =2TcR(— LR —1—L3(R))v—(Q—22—>0
oRn dr T 2 dr
when R — 0, Q,¢0Kp,
dA
J, = f@(y)___@dsy — 2nRo(g) HAYE) _
dr dr
KR
402
= 2nR{— - +L,(R)|v(§Q;) -~ —8C%(x,y) when BR—>0, Q,c0Kg.

By (24) and (25) we obtain the formula (6). The function U (r) defined
by (14) being obviously sufficiently regular, it follows that U(r) is a fun-
damental solution.

4. Now we shall construct the fundamental solution for the equation (1)
in the three dimensional case. In this case the integrals depending only on
the distance r satisfy the equation

(26) VO +EV(r) =0, r>0.

We shall consider two cases: (a) k = —C* (b) k = C*, C constant.
Case (a). The equation (26) is of the form

(27) ' V@) —C*V(r) = 0.

The functions V,(r) = e“, V,(r) = cosOr, are linearly independent
solutions of the equation (27) and the functions

1 1 Cr !1
Uy(r) = " Vir) = 76 , Uy(r) = —r—cosCr,

]

are analogously related with the equation (1).
THEOREM 2. If n =3, k = —C", then the functz‘on
(28) U(r) = Uy (r)—U,(r) = r~1(e° — cos Cr)

is the fundamental solution of the equation (1).

Proof. We shall prove that function U(r), defined by formula (28),
satisfies the identity (6a) with a; = 8C2% Let v(z, ¥, 2) be a function of
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class C% in D satisfying the equation (1) and let K5 be a sphere with the
centre X (x,¥,#) and radius R. Applying the fundamental formula ([2])

fff 1A% —(Y)—o(Y)A2U(r ))dwdudz+Jf( %A@(y)_

d d
—Av(Y)— Uny+A4U0@)—v(Y)—o(Y)— AU (r)}dSy = 0
an dn an
to the function U(r) and »(x, ¥, 2) in the domain D— Ky we obtain

jff r) A% (V) —v (Y) 42U (r)) dé dnd,

- — ff (U(r) Av(Y)——Av(Y)%— U(r))dSy——

oD=Kp) dny
_ Jf (AU(T) (Y)—U(Y)iAU(r))dsy.
oADK any dan

Since the functions U(r) and »(Y) satisfy the equation (1) it follows
that the left-hand side of (27) is equal to zero. Hence by (29)

au d d
ff(U—m;_m_ AT —v-—-AU)dSy+
i an  "an

n fo_Avdsy— ffm; Sy + ffAUMdSY—-
—ainvEFAUdSY=O.

Applying the mean value theorem for the surface integrals in for-
mula (30) we obtain in view of (7), (8) and (28)

J, = ff U(r w—Av( ydSy = 4nR (" — cosCOr) — o (Av(Q)) -0,
K p
when B — 0, Q¢0Kpg,

J, = ij Y) dsy = 4nR*Av(Q,)(— R 2“E+R™'0"F -
Kp
+R™ cosCR+0R 'sinCR) — 0 when R —0, Q,e0Kp,
d Y
Jy = “ AU(r o )dsy = —4nRO*(°F+ cosOR) @0(Q,) -0,
= dar dr
when R — 0, Q,e0KR,
J, = f f ——AU(r)dSY = 47 R (Q,) (C*R2%“F—(PR¢"F +
KR

+C*R~*cosCR+C*R™'sinCR) — 8C°nv(x, y,2), when R — 0, Q,¢0Kx.
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By the above formulas and (30) we get (6a). The function U (r) is
obviously of class 0¥, whence by Definition 1, it is a fundamental solution
in our case.

Case (b). The equation (26) takes the form
(31) V() 4+C*V (r) = 0.

Ar,

The functions V,(r) = e*"sindr, V,(r) = e sindr, where A —

=0V2 /2, are two linearly independent solutions of (31) as well as the

functions U,(r) = r‘e?"sindr, U,(r) =r 'e “"sindr are linearly in-

dependent solutions of (1).
Now we shall prove

THEOREM 3. If n = 3, k = C*, then the function
(32) U(r) = Uy (r)—Uy(r) = r 'sin dr (e’ —e ")
i8 a fundamental solution of the equation (1).

Proof. We shall prove that the function U(r) given by formula
(32) satisfies (6a) with a; = —8wx(2 Using analogous arguments as
in the proof of the Theorem 2 we may obtain the formula (30). Applying

the mean value theorem to the surface integral in the formula (30), using
(7), (8) and (32), we obtain formulas analogous’ to (25)

52 d -1 AR -AR >
J, = 4nR E;Av(@) R "sindR(e""—e ") -0, @QecdKp, R0,
Jy = AnR(Av(Qy)) (' — e )R '(AcosAR—R 'sin AR)+
+AR 'sinAR(e'F—e ) >0, Q,e0Kp, R0,
. d
J, = 4nR? (?I——U(Qz))2ff T(Acos AR) (e + e 1%y >0, Q,c0Ky,
s

‘ 2

24
J, = 4n1{%(03)_§ (e +e ) (—R 'eos AR — Asin AR)-|

|

+A(e—e ) cos AR) - —8xC*v(x,y,2), R—>0, Q3edkpy

From these formulas and from formula (30) follows (6a). The funetion
U (r) is evidently sufficiently regular, whence it is a fundamental solution
of (1).

5. Now let us consider the case n >3, k = —C"

of form

Our equation is

(33) Au(X)—Cu(X) =0, X = (@1, ..., ).

By Lemma 2 the solutions U(r) of the equation (33) satisfying respectively
(7) and (8) are solutions of the differential equation

(34) U (r)+ (n—1)r=1U" (r)+C2U (r) = 0



Construction of the fundamental solution 221

and
(3b) '+ n—1)r10 (r)—0C2U0(r) = 0,

respectively. Conversely, solutions of (34) and (35) are solutions of (33).
Upon setting R = (r in equation (33) we obtain the equation

2—mn
1-2——
(34a) U'(B)+ ——— U'(R)+U(R) =0,
which Is a special case of the equation ({4])
’ 1_20' ’ —1\2 0.2—82')/2
(36) U@+ U@ BT+ - UR) =0,
where
2-—n n—2
a=—2 y Z:R, y:ﬂ:l’ S '—= —a =— 2
The solutions of (36) are ([4])
(37) U(z) = zaZs(ﬂzy)7

where in the case when s is a positive integer

v 2 z 1 N (s—k—1)1 [g\%s
(38) Zs(z>—Ys(z>—~Js<z)1n§_.wZ.. _~(E) 4

= - k! 2
k=0
L N DR
- kr(;;w‘( f(k+1)—f(k+s+1)},

k=0
‘where

and, in the case of non-integer s,
had ___1 X 2 2k—s
(39) 70 = o) = ) - TR
~ I'k+1)I'(k—s+1)
Consequently, the function
U(ry = (Or)y "=D2Z (Cr)
is a solution of the equation (34).
We shall single out three cases:
1°s =(n—2)/2 =2p+1
2° s = (n—2)/2 =2p
3° 8 = (n—2)/2 for n even.

} P a positive integer,
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Ad 1° In this case in view of (38)

—2p—1
(10) Y, (0r) = — 22! (ﬂ) Iy
) T 2
where
8-—1
2 or 1 (s—k—1)! [ Or\2*-¢
Vi) = —Jo(Ontn—g — — I (7) -

*® __1\k O s+2k
_l v (,,I_)Q“/Q_ (f(k+1)—0—f(k+s+1)) _ 0(7‘21’“).

In Virtue'of (37), (38), (40) and Lemma 2 the function

(41) Us(r) = (Cr)= <~ ep) ((’;l)* e (r))

is a solution of the equation (34). Replacing € by €% in (34) we obtain (35),
whence Im (Cir)™* ="' Y, (Cir) as well as U,(r) = (Cr)"*Im Y, (Cir) are
solutions of (35). From (40) it follows that

1 Cir \~2P 1
Y (COir) = *~_—(2p)!(7) + Ty (Cir),
where
N . |
2 Cir \ . . 1 (2p— k)! | Cir \2k—2m-1
V2(07/r) - 'l:;' (111 7) JS(O@V)— ;—g-———k—'—“(——i—) _—
1\ (—1)F(Cirj2)rrk+t
e R - 1 3 .
Thus
: ) —2p—1 9 ,
Im Y,(Cir) = (—1)" (%) YL i),
i
and therefore
Or\~?-1 (2p)!

where
Vi(r) = Im V,(Cir) = O(r~ 1),

THEOREM 4. If "> 3,8 =(n—2)/2 = 2p+1, p is a positive integer,
then the function
U(r) = C,U,y(r)+C,Usx(r),
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where 0, = 1, C, = (—1)"; U,(r) and U,(r) are defined by the formulas
(41) and (42), or

(43) U(r) = (Or) 70,V (r)+0, V(7))
is a fundamental solution of the equation (33).
Proof. In view of (43),
(44) U(r) = 00*™),
(45)  U'(r) = C(=2p—1)(On)" 720,V +CuV5(r)) + ‘
H(CN TP HOT () +CV5() = 00>,

because V,(r) = O(r *) = V,(r). Using (7) and (8) we get
(46) AU(r) = —C*(0,U(r)—C,U,(r))

= 20%(Or)~*P-292P+1 2p)! —C*(Cr) 1, Vo (1) — €y V4 (7))

™

— 00",

!
(47) ;7 AU (r) = C®(—4p — 2)(Cr)~*P—32%+2 (2p)! I
T

+C%(2p +1)(Or) 720V 1 (r) — C, V4 (1)) — C*(Cr) ™~ YO,V (r) — C, Vo (7))
= ﬁn"'l—n+0(’rg—n)a
where

Bn = — i Q=" o(n+2)/2 (t_z_) 1.
T 2

Noting that the function (43) satisfies the conditions 1° and 2° of
the Definition 1, it is sufficient to show the condition 3°. Applying sim-
ilar arguments as in the proof of Theorem 2 we obtain the formula (30).
The surface integrals are (n—1)-fold integrals. Applying the mean value
theorem to the surface integrals, by (44), (45), (46), and (47), we get

ff U r)—~Av( )dSy = Q,R"'O(R*™™") = 0(R3‘) )

KR

Jy = ffA Y)——dSy = Q,B"0(R") = O(RY) — 0,

. KR

Jy = ffAU )"*fidSy = Q,R"'0(R*™) = O(R) -0,

0K g

J, = ffv Y)——AU( r)dSy = Q,R" (B, R"+0(R*""™)v(Q) —

JKpR

(48)

— a,v(X), Q0Kp,
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where o, = 2,0, and 2, denotes the area of the unit sphere in the n-di-

mensional space.
In virtue of (48) and (38) we obtain (6a). Our assertion follows, since

U(r) is obviously of class O,
Ad 2° Let s = (n—2)/2 = 2p. In view of (38)

. 2p—1)! (Or\ ?P
(19) Y, (or) = — 221 (7) 1),
b 2
where
s$—-1
9 Cr 1 N (s—hk—1)! [ Cr\®-s

T (r) = . o il I
() = —J,(0n)In - k}j - ( . ) 1

1\ (—Df(ory2y

2 R R (—f(k+1)—f(k+s+1)) = 0@* ).

’ .

By Lemma 2 and by (38), (37) and (49) the function

I R = L | ")

is a solution of the equation (34).
Since by (38) and (40)

, 1 Cir \ ™% -
Y (Cir) = — -~ (2p—1)! 5 +T,(Cr),
i
where
o (2p—k—1)1 [ Cir \ -2
T,(Cir) = — ] (C’w)ln _— 2 L ( 2W) —
1o (—1)F (Cirj2) e
—;C—gﬂ WGy g T D ftet s 1) = 00,

we have

] 1 Or\~ .

Re Y (Cir) = (2p 1)! 5" ( —1)? 4+ Re T, (Cwr)

and it follows that the function

2p—1)! (Or\™*
(51) - Um)=(0rr*’.’(—(—1>”“’ﬁ—)(—25) +T3<r)),

where Ty(r) = ReT,(Cir) = O(r~*"*™") is a solution of the equation (34).
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THEOREM 5. If -n >3, s = (n—2)/2 = 2p, and p s a positive in-
teger, then the function

(h2) U(ry = C U (r)+0,U,(r) = (07")_2[)<01711 (7')+02”3(7'))’

C, = —1, 0y = (—=1)%, U, (r) and U,(r) are defined by formulas (50) and
(51), is a fundamental solution of the equation (33).
Proof. In virtue of (52)

U(r) =00 ")

and
U'(r) = —2pC(Cr)™ YO, T, (r)+CT5 (1) + (Or) (0T +0,T) = 0(*™™).
In view of (7), (8), (50) and (51) )
AUr) = C AU, (r)+CA4Uy(r) = —C*(C U, (r)—C, U, (7))
(2p—1)! (

TC

= (2% C )*’“)(01—(-1)'") ‘"02(07')_22)(01171("')—02113("')}

and consequently AU (r) = O(r*~") and

) e (2p—1)! N
AT = e C2=D gpy--ri0, - (—1p) 4
dr 7

+0%2p (Cr)™ ¥~ 1O, 11 (r) — C o5 (1)) — C* (Cr) ™ (O, 11, (r) — CoT'5 (7))
ap—1 (21”“1)'

= —C*p2 T (Or)~""" — (O (=1)PCy)+0 (™)
— ﬂn,’,l——n_%_o(,r:i—n)
where
1
(53) B = — C*"20 Dy — 2) (n—4)!.

'

Applying similar arguments as in the proof of Theorem 4 we
get formulas analogous to (48) with «, = 2,8,, where g, is given by
formula (53). We may obtain our conclusion similarly as in the proof of
Theorem 5.

Ad 3°. In the case 3° we single out two subecases

n—2

1
8°A) s =g =2+ 1) =2+ for ¢=2p,
n—2 1 3 ]
3°B) s =- 3 (2q—}—1); p—}—; for ¢ =2p+1.

Prace Matematyczne IX. 2 15
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In view of Lemma 2 and formulas (37) and (39) the functions
(54) Uy(r) = u,(Cr)
1 1 .
— 2(n~2)/2 C I-n 2(1!.-6)/2 C 4—n W.(C
rIri—s) (0n T2 —s) (O 4 Wa(On),
where » '
) (Cr2)*-¢

w — (2-n)/2 = Q5"
1(0r) = (O) Fl—{—kl’ st 20

and
2(%—2)[2(07_)2—7L,L'2—n 2(n—6)/2(0,’,)4——ni4—n

w0 = = a9 T re—s)

+ W, (Cir),

where W, (Cir) = 0(»*~"), are solutions of (34) as well as the functions
Rewu, (Cir) and Imu,(Cir).
Ad 3°A). In this case ¢~" = 7 whence

e
Let U,(r) = Imwu, (Cir) and let
(55) U(r) = —(Uy(r)+ U2(¢))—(W1(Cr)+Ile(Cir)).
Ad 3°B). In this case 1" = —1 Wheﬁce like in case 3°A) the funection

defined by (34), the funetion u,(Cir) and
2(n—2)/2 (Cr)2—’n 2(%—6)/2 (01,,)4—7’1,
U =1 ir) = ImW,(C¢
3(7) mug (Cir) T (I—s) + T2 T(2—s) +TImW,(Cir)

are solutions of (55). Let

2(%—4)/2 (07)4—71 .
(56) U("') = U3(7'),—“ UI(T) == m— +ImW1(C’L7)_W1(GT)-
THEOREM 6. Let n > 3, s = (n—2)(2 = 2p +§ or s = 2p+3, p being
a positive integer. Then the functions defined by (55) and (56) are respecti-
vely solutions of (33).
Proof. We shall only consider the case 3°A) since in the case 3°B)
the proof is analogous. We have

Ur) = A, 7" 200%™, —U@r) = 4,75 "+0 (5™,

dar
a
AU(r) = A7 "0 ("), - AU(r) = A" +0(™™),

where 4,, A,, A;, A, are constants and A, = 2"~ Y2C*"[I"(2)I'(2—s)]"L
We conclude the proof similarly as this of Theorem 4, setting a, = 2,4,.
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6. Now we shall construct fundamental solutions for the equation
(1,’) Azu(m, y)+04u(w, Y) = 0,
C a positive constant. Since (1'') may be obtained from (1’) when replacing
C by CVi, the function U(r) = Im Y,(Crv4) is a solution of (1”'). By (12)

Y, (0rvi) = 3(m 021/@' —f—y) - 3-,(}?” (2111 CrVi —k) 1P (r),
™

T 2 2
where B B
1 \°° (—1)%(Crv/i/2)* orvi N
Py(r) = ;ké; L (2111 ~2f(k~r1)) =0,

¢ being an arbitrary positive constant, and k = f(2). Hence

- 2 Or x [ Cr\?
Y,(CrVi) = - In— 4+y+ — (— +

2 2\ 2 ,
n 2 (= ‘)(Cr)zl Or +k(07)2)1}+P ")
=\a “\2) "2 2 !
and it follows that
— 2 2 C 2
(37) U(r) = ImY,(CrVi) = —(i —2 (ﬂ) 1n—71 —Hc(g) ) 4+ Im P, (7).
7 \ 4 2 2 \ 2

THEOREM 7. Let n = 2, then the fundamental solution of (1'') is given
by formula (57).

Proof. The function U(r) defined by (57) satisfies obviously

U(T) = 0(1)7
C 2 2
U'(r) = 3(_027"111—1 -l k’”) +(Im Py (r)) = Blln—cz+0(r),
- 2 2 ‘ 2
(jll — 3(__02111?1 + 02”. E-(]2) + I P (7'))” ! |
(r) = = 9 2 2 (m P, ’ .
§ 2 .
U (r) = — + (Im Py (1)),
r
AU(r) = U" (r)+r72U(r)
2

Cr . Y
— ——202111—2— — 202+ C?%k |+ (Im Py (r))”" + 7 (Im Py (r))’

To.‘

C
= Bgln—gL +0(r),

%AU(?’) — U (r) 1T () — 2T (7)

S— 4—6: +(ImPy (1) + —j‘—(ImP1 (1)) —r=2(lm P, (r))’
T

= Byr-14-0(r),
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where B, B, are constants and B; = —4x~1(% The remaining part
of the proof is similar to this of Theorem 1.

7. In this Section the construction of the fundamental solution of
"’ Au(X)+C*u(X) =0, X(x4,...,®,), C const
will be given for n > 3. B

Equation (1'") is obtained from (33) when replacing C by ¢ Vi.

We shall distingunish eight cases

1°A) s =2p+1 = 8¢+1 for p = 4q,

1°B) s =2p+1 =8¢+3 for p =4¢+1,

1°C) s =2p+1 = 8¢+5 for p =49+ 2,

1°D) s =2p+1=8¢+7 for p = 49+ 3,

2°A) s = 2p = 4q for p = 2¢,

2°B) s = 2p = 4¢+2 for p = 2¢+1,

3°A) s = q+4 =2p+4% for ¢ =2p,

3°B) s = q+% = 2p+; for ¢ = 2p+1.

Ad 1°A). By (‘38)

(58) Y, (OrVi)y= ——-(8 ! (O’% )— *l(sq—n!(ﬁrﬁ) —
2 T 2
1 v(Sq——k)! Orvi\¥-s-1 2 - OrYi
, s FL )T e S

8-1 2k

(—1) *Orv'i[2 -
2 Kl (s+R)! (f(B+1)+f(k+s+1)).

In virtue of (37) and (58) the funetion
Fo(r) = (CrVi) = Y (0rVi)
1 - 1 ; -
=-= (8q)!28"“(0rl/i)“°q”2—~(8g——1)!28“‘1(Oﬂ/i)‘1°’1+W’1(7'_)

- ‘,1: (8¢) 128+ (Cr) 1042 — —(811 IO T W (),
where
8¢ -
- 1 (8q~k)! C?'l/i 2k.- 8¢ 1
. sq-1f
W.(r) = (CrVi) ( - kZ 7l ( 2 ) *

(flk+ 1)+ f(k+s+1))

()'M/@ 2 (— (JN/@/Z 2k

+ - 2 J S(Orvi)l
- rVi)ln - — - 7k’(e+lc

= 0@
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and the function
~ ; 1. 58¢—1 — 16y
(59) Uy(r) = —ReF,(r) = — (8g—1)12%1(0r)~"“ { Re W, (r)
b

are solutions of (1").
Ad 1°B). The function

Fy(r) = (Cr Vi) =3Y(Cr V1)

1 1
= (8q+~))!28qﬂ3(07) 16q—6 + (8q+])'28(1+1(07‘) 166=4 LW, (s ),

where
Wy (r) .
8¢+2
N~ (8g+2—k)! Or Vi \2-m-3 2, m
= (CrVi) ™ 3( ( ) + o (CrVi)n S
g k! 2 T

o1 (—=1)for l/z/z §+2k ‘ o
N k-1 § k — n
k%/ T kl(s+Fk)! (f( +1)+f(s+ +1)) o™

and the function

1
(60) Us(r) = ReFy(r) = — (8¢+1)!12% 1 (Or)~ 1= * L Re W, (r)

7

are solutions of (1'"').
Ad 1°C). The function

Fy(r) = (OrVi) ™ SY,(Or Vi)

= (3412 (0n) 1 L (g 41900 oy H WL,
where
Ws(r)
s X BgrA—) [OrVi B 2 opyf
= (CrV4) 8‘1-5(7; = ( 5 ) )+-—%Js(0rl/@)ln 5~

—1)%(C Vi )5+
_——7;2( —1) (CrVif2) ~ (fEH 1) Fflk+s+1)) = 0@,

k(s + k)

k=0
and the function

1
(61)  Us(r) = —ReFy(r) = — (8¢+3)12°7%(Cr) "™ - Re W, (r)
™

are solutions of (1'"').
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Ad 1°D). The function
Fy(r) = (CrVi) Y, (Or 1/2‘)

= 1 (8q+ b)!28q+7(07,)-164—14 + (8q+5)'28q+5(0¢)—160—12+w ( )

where
Wa(r)
8¢ +6 ; —
—— (8¢+6—k)! [CrVi\®-s-7\ 2 orvi
= (OrVi) ™ ’( ( ) +—J,(CrVi)In -
g k' 2 T u

“”‘Z —1)¥(CrVij2)

El(s+k)! (fE+1)+f(k+s+1) = 0™

and the function
1

(62) U,(r) = ReF,(r) = —(8¢+5)!12%"5(Or) 1% L. Re W ,(r)
ki3

are solutions of (1'').

THEOREM 8. Let n > 3. If s = (n--2)/2 = 8¢-+1, 8¢-+3, 8¢+5, 8¢+7T
then the functions (59), (60), (61) and (62) are respectively fundamental
solutions of (1'"').

Proof. We shall only consider the case s = 8¢+1, the remaining
ones are worked out similarly. By (59)

Uy(r) = O " 400%™, Uy(r) = Cor* "0 ™),
d
AU, (r) = Cyr* " 40(r*"™), ar AU (r) = Cyr' "+ 0 ("),

where C,, 0,, C, are constants and C, = 2C*2(0*"((n—2)/2)!
The proof runs down like this of Theorem 4.
The next theorem will deal with the case 2°A) and 2°B).
If s = 2p = 4¢ then the function

Fy(r) = (Or Vi)™ Y (Cr Vi)

I

1 1

— —(4q—1)12*YCr) ™% — —(4¢—2)12'2(Or) ¥ L W (r),
T T

and the function

1 ‘
(63)  Ustr) = ~TmPFy(r) = — (4g—2)127H(Cr) ™ — ImW(r),
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8—1

~ erviy [ 3 k0 (VN2 g i

k! 2

k=2

korvij2)+
_—Z k! s:— Zgr) ‘f(k+1)+f(k+8»%l))) = 0™

are solutions of (1'").
If s = 2p = 4¢+2 the function

Fo(r) = (CrVi)™2Y,(Cr Vi)

1 1
=— (g 1)! 24 (Or) TR —(49) 124 (0r)"M 24 W(r),

where
We(r) i
v sl -~
- {1 (s—k—1)! (OH/z’ )2“ 2 orvi
— C 4q—-2 1 .
(CrV'i) (Mn ki o 5 +— - Jo(CrvVi)In 5

1 {‘% —1)¥(OrvVij2)*+?*
Cm kl(s—+k)!

0

(f(k+1)+f(k+s+1)) = O(r5™)
and the funection

(64) Us(r) = ImF(r) = %(4(;)!2”(07‘)”8‘1'24— ImW(r)

~

are solutions of (1'").
THEOREM 9. Letn > 3. If s = (n—2)/2 = 4qors = (n—2)/2 = 4¢+2
then the functions (63) and (64) are respectively fundamental solutions
Of (1III
Proof. We shall only consider the case 2°A), the second one being
analogous. By (63)

Uslr) = Dy ™" 100%™, Us(r) = Dy " +0(°),
AUs(r) = Dyr* " +0(*™"), %AUS(T) = Dm0 (),
where D;, D,, D; are constants,
D, = ((n—6)/2)12= 20" (4 —p)(2—n)

and the proof is analogous to this of Theorem 4.
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Let now ¢ = ¢+3% = 2p+4. The function

2 2323 z—2s+22su l)l. 2k—8
2z "V(2) = - -
&= riyra—s T rere—y T Z Fk+1 (k—s41)
is a solution of (36), whence the function
Fo(r) = (Cr Vi)Y, (Or Vi)
= *fj————wr Viy 21— A——ii—‘— (Cr Vi) 2q+W (),
rIr—s) re)re—s

where
—1)¥(OrVij2)P-1-1e

bd o —q-1/2 ( SN GRS
W(r) = (Crvi) k% RO T = O

and the function
Us(r) = (—1)"Re Fy(r)
28—1/2(07)——41)—~1 28—5/2(0,,,)1 ~ 4P
— —1)ReW
rOra—s) TTErE—s (T ReWm)

satisfy (1'"). Also the funection

Fo(r) = (CriVi) Y (Ori Vi)
2_Sv(qyl_4p—l G612 -40-1) 2°” 2(0 )*WH

-(3/2)(1—4p)
rara—s Tere—y ' TWim,

‘where

VE(Oriv'i[2)™ o —0pt ™

Cm/”‘ r k+1)r(k—e+1)

and the function
2S~l/2(0r)—4p—l 28——5/2(0,’,)1—41)

Usr) = (=1 ImPa(r) = = o b s (1 i)

are solutions of (1'"). If follows that the function

()S- 3/2(07,)1 ap

T Ty ) (Re W) Tm W (1)

(63)  Ulr) = Us(r)+Us(r) =
is a solution of (1'").
Let s = ¢4+4% = 2p+3, the function
Fo(r) = (Or Vi) Y, (Cr Vi)

_gj(or)-“—l(ﬂ)-‘m*l 252 (Or) P (Vi)

raria—s) o r2)r@e—s) + Ws(r),




Construction of the fundamental solution 233

where

o0

y v (- 1)'“(01"1/@ s
~ I(k+1)(k+s+1)

2

WS( ) == ((/V V? _ ()(7,.6—71,)

and the function
Ug(r) = (—1)PReFy(r)
5—1/2 a3 s 52 w1
=~ Tmrfin * rmre RO
are solutions of (1’”’). Solutions of (1'"') are also the function
Fy(r) = (Ori l/@) s(Ori l/z

25(0¢~)'~4f'~3 ~

98 2 -1
N S T TCE VS S(on

JCEw=1 |y
P —s) rre—s o)

where

{i (—1)F(OriVi2)*-*

Wilr) = (CriViy * 441“(k+1) (k—s+1)

= 0(r* "

and the function
Uy(r) = (— 1)’ Re Fy(r)

28—1/2(07,)~4p—3 28—5/2(07,) Ap-1

MO~ Ty TV ReWm.

Hence the funection

2532 () —4P 1
(66) U 0) = V()= Ualr) = it 4 (1P (ReW, (1) ReWy )

is a solution of (1'").
Now

U(r) = B0,  U'r) = B,y 407",
d
U(") 4%7'2 n+0( 4 "), }I;AU(T) = E47~1"7"+(}(,'.3-n),

2" ”(2 ")
ra)ri4—a)j2)’

By the already familiar procedure we may prove the

THEOREM 10. Let n > 3. If s =2 '(n—2) = 2p+1 or s = (n—2)/2
= 2p-+3, then the functions (65) and (66) are respectively fundamental
solutions of (17").

E,, E,, E; being constants, and ¥, =
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8. In this Section we shall apply the fundamental solutions U (r)
f (1) to the boundary problems of Lauricelli ([2]) and of Riquier ([27])
for the equation (1).

Let H(X, Y) be a function of X, Y- defined in D x D and satisfying
the conditions

1. H(X, Y)eO" for (X, Y)eD xD,

2. H(X, Y)eO® for (X, Y)eDxD,

3. H(X, Y) = U(r) for YedD,

dH au

4, — = for YeoD
d’ny dny or ¢ ’

5. As a function of Y, H (X, Y) satisfies the equation
AH(X, Y)+kH(X,Y) =0, YeD.
DEFINITION 2. The function '
(67) GX,Y)y=U(r)—H(X,Y)

18 called the Green function of type (L) for the equation (1) in the (bounded)
domain D. '

We shall now give a formula solving the Lauricelli problem for the
equation (1). Taking in the fundamental formula

(68) fff (wd?v—vA%u)dx,...do, -+
D

dv dAu aAv
- Ay —— — —— —Av—}dSy = 0
+‘afnf( udn v an o an vdn) v

a solution of class O™ of (1) in D as u(Y), and as »(Y) the function
1

2%

H(X,Y) we obtain from (68) and by identity wA*H —H A% = 0

aAU ad ayu
(69) 0 =~—fj( u————H +U el —Au—*)dSI
dn an d
Upon settmg v(Y) as u(Y) into (6a) we get
aaU ad aUu
(70) ff(AU———u L2 4t as,.
dn dn dan

If we add formulas (69) and (70) then we have

1 du dAH  dAU
X)=— AU —AH) — —
) a"i)f(( t )dn+(‘dn dan )u

dAu

(dH aU)
an

+ ———)Au+(U —H)

asy.
dn  dn )SY
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By conditions 3 and 4 and by Definition 2 we obtain

(71) w(X) ——ff( Gﬁ—%ﬁu)dsy

THEOREM 11. Suppose that there exists Green function of type

(L). Let
the functions f(Y) and h(Y) be continuous on 0D, the boundary of D, then
the function

1 dAG (X, Y)
wW(X) = a—afpf (h(Y)AG(X, Y)—f(Y) ——d—ny——)dsy

solves the boundary problem of Lawricelli:

—51, ™Y _ 4y for veon.
d’ny

The Green function for the Riquier (R) problem is defined as follows.
Let H,(X,Y) be a function of X, Y defined in D x D and satisfying
conditions:

6. H, (X, Y)eC" for (X, Y)eDxD
7. H (X, Y)eC® for (X, Y)eDxD
8. AH, = AU (r) for YeaD,
aAH aau
L= for YedD,
d’ny d‘ny‘

10. As a function of ¥, H, satisfies the equation (1)

DerinITION 3. The funection G(X, Y) = U(r)—H (X, Y) is called
the Green function of type (R) for the equation (1) in the (bounded) do
main D.

Analogously as above

1 aA A (X, Y
— ———ff(Gl(X, y) dan 46X, Y) Au)dSY
ap s : dan dn

which implies

THEOREM 12. Suppose that there exists Green function of type (R).
If f,(Y) and hy(Y) are continuous functions on 0D then the formula

dGlX Y)  d46,(X, )
L 3 s,

solves the equation (1) with the Riquier boundary wvalues

Y)=f(Y), A4Au(Y)="nh(Y) for YedD.
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