R. Taberski (Poznań)

Singular integrals depending on two parameters

1. Introduction. Let $L_{2\pi}$ be the class of all functions 2π-periodic and Lebesgue-integrable in the interval $<-\pi, \pi>$. Write $L(a, b)$ for the class of functions Lebesgue-integrable in $<a, b>$. Denote, once for all, by $K(t, \xi)$ a function defined for all t and $\xi \in E$ (where E is a given set of numbers), 2π-periodic, even, bounded and measurable with respect to t for every fixed $\xi \in E$. Suppose that ξ_0 is an accumulation point of E.

It is easily observed that Fejér's theorem concerning the convergence of singular integrals

\[U(x, \xi, f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t)K(t-x, \xi)dt \quad (f \in L_{2\pi}) \]

can be extended to the convergence $(x, \xi) \to (x_0, \xi_0)$ on an arbitrary set of points of the plane. Namely,

1.1. If

\[\lim_{\xi \to \xi_0} \int_{-\pi}^{\pi} K(t, \xi)dt = 1 \quad (\xi \in E), \]

\[\int_{-\pi}^{\pi} |K(t, \xi)|dt \leq C \quad \text{on } E \quad (C = \text{const}), \]

\[\lim_{\xi \to \xi_0} \sup_{\delta < t < \pi} |K(t, \xi)| = 0 \quad \text{for } \delta > 0 \quad (\delta \leq \pi, \xi \in E), \]

then we have

\[\lim_{(x, \xi) \to (x_0, \xi_0)} U(x, \xi, f) = f(x_0) \quad (\xi \in E) \]

at every x_0 at which f is continuous (cf. [4], I, p. 89, [1], p. 418).

Relation (5) holds at the points of differentiability of $\int_0^x f(t)dt$, under the assumptions of Romanovski's theorem, if the convergence $(x, \xi) \to (x_0, \xi_0)$ is restricted to some set of points of the plane. Also a theorem of the Faddeev type and a result concerning the convergence of derivatives $\partial^r U(x, \xi, f)/\partial x^r$ can be stated. The present note is devoted to these problems.
2. A generalization of Natanson's lemma. We shall prove the following fundamental lemma (cf. [3], p. 243).

2.1. Let \(\varphi(t) \) be a function of bounded variation in every interval \((a + \eta, b) \) \((0 < \eta < b - a) \), such that \(\int_a^b v(s)ds < \infty \), where

\[
v(s) = \text{var} \varphi(t) \quad (a \leq s < b), \quad v(b) = 0.
\]

Then, if

\[
M = \sup_{0 < h < b - a} \left| \frac{1}{h} \int_a^{a+h} f(t)dt \right| < \infty \quad (f \in L(a, b)),
\]

the improper Lebesgue integral \(I = \int_a^b f(t) \varphi(t)dt \) exists and

\[
|I| \leq M \int_a^b [v(s) + |\varphi(b)|]ds.
\]

Proof. Write

\[
F(t) = \int_a^t f(u)du \quad (a \leq t \leq b),
\]

\[
I_{a,\beta} = \int_a^\beta f(t)\varphi(t)dt \quad (a < \alpha < \beta \leq b).
\]

Integrating by parts, we obtain

\[
I_{a,\beta} = \int_a^\beta \varphi(t)dF(t) = \varphi(t)F(t)|_a^\beta - \int_a^\beta F(t)d\varphi(t).
\]

Since

\[
\left| \int_a^\beta F(t)d\varphi(t) \right| \leq M \int_a^\beta (t - a)d[-v(t)] = M \left[(a - t)v(t)|_a^\beta + \int_a^\beta v(t)dt \right],
\]

\[
(a - a)|\varphi(a) - \varphi(b)| \leq (a - a)v(a) \leq \int_a^b v(t)dt,
\]

the integral \(\int_a^b F(t)d\varphi(t) \) exists and

\[
\left| \int_a^b F(t)d\varphi(t) \right| \leq M \int_a^b v(t)dt.
\]

Our conclusion is now evident.
Remark. If \(\psi(t) \) is such that \(\int_{a}^{b} w(s) \, ds < \infty \), where
\[
 w(s) = \var\psi(t) \quad (a < s \leq b), \quad w(a) = 0,
\]
then
\[
\left| \int_{a}^{b} f(t) \psi(t) \, dt \right| \leq N \int_{a}^{b} [w(s) + |\psi(a)|] \, ds,
\]
with
\[
N = \sup_{0 < h < b-a} \left| \frac{1}{h} \int_{b-h}^{b} f(t) \, dt \right| < \infty.
\]

3. Theorems of the Romanovski and the Faddeev type. Some results on the convergence of integrals (1) will now be given.

3.1. Suppose that the function \(K(t, \xi) \) is non-negative and non-increasing in \(t \) on \(\langle 0, \pi \rangle \) for every \(\xi \in E \), that it satisfies condition (2) and that
\[
\lim_{\xi \to 0} K(\delta, \xi) = 0 \quad \text{for} \quad 0 < \delta \leq \pi \quad (\xi \in E).
\]
Let
\[
\lim_{h \to 0} \frac{1}{h} \int_{x_0 - h}^{x_0 + h} f(t) \, dt = f(x_0) \quad (f \in L_{2\pi})
\]
at some \(x_0 \). Then integrals (1) tend to \(f(x_0) \) as \((x, \xi) \to (x_0, \xi_0) \) on any plane set \(Z \) in which the function
\[
\lambda(x, \xi) = (x-x_0)K(0, \xi) \quad (\xi \in E)
\]
is bounded (cf. [3], p. 245, [4], I, p. 101, (7.9)).

Proof. Of course, it is sufficient to show that
\[
I(x, \xi) = \int_{-\pi}^{\pi} [f(t)-f(x_0)]K(t-x, \xi) \, dt \to 0
\]
as \((x, \xi) \to (x_0, \xi_0) \) on \(Z \).

We consider only the case \(-\pi < x_0 \leq 0\). By (7), given \(\varepsilon > 0 \) there is a \(\delta > 0 \) such that
\[
\left| \frac{1}{h} \int_{x_0}^{x_0+h} [f(t)-f(x_0)] \, dt \right| \leq \varepsilon \quad \text{when} \quad 0 < h \leq \delta.
\]
Suppose that \(\delta < \pi - x_0, \quad 0 < x_0 - x < \frac{1}{2} \delta \), and write
\[
I(x, \xi) = \left(\int_{-\pi}^{x_0-\delta} + \int_{x_0-\delta}^{x_0+\delta} + \int_{x_0+\delta}^{\pi} \right) [f(t)-f(x_0)] K(t-x, \xi) \, dt = I_1 + I_2 + I_3.
\]
It is easy to see that
\[|I_1| \leq K(x_0 - x - \delta, \xi) \int_{-\pi}^{\pi} |f(t) - f(x_0)| dt \leq K(\frac{1}{2} \delta, \xi) \int_{-\pi}^{\pi} |f(t) - f(x_0)| dt \]
and
\[|I_3| \leq k(\frac{1}{2} \delta, \xi) \int_{x_0 - \delta}^{x_0 + \delta} |f(t) - f(x_0)| dt \leq K(\frac{1}{2} \delta, \xi) \int_{-\pi}^{\pi} |f(t) - f(x_0)| dt. \]
Hence, by (6),
\[\lim_{(x, \xi) \to (x_0, \xi_0)} I_1 = 0 = \lim_{(x, \xi) \to (x_0, \xi_0)} I_3 \quad \text{as} \quad (x, \xi) \to (x_0, \xi_0), \quad \xi \in E. \]
In view of 2.1,
\[|I_2| \leq \epsilon \int_{x_0 - \delta}^{x_0 + \delta} \left[\var K(t - x, \xi) + K(x_0 - x, \xi) \right] dt + \epsilon \int_{x_0 - \delta}^{x_0 + \delta} \left[\var K(t - x, \xi) + K(x_0 - x, \xi) \right] dt \leq \epsilon \left[\int_{-\pi}^{\pi} K(s, \xi) ds + 2(x_0 - x)K(0, \xi) \right]. \]
Therefore, if the points \((x, \xi) \in Z\) are sufficiently near to \((x_0, \xi_0)\), we have
\[|I_2| \leq 2\epsilon (Q + 1), \]
where \(Q = \sup |(x-x_0)K(0, \xi)| (x, \xi) \in Z). \]
Thus, the proof is finished. Similarly, the following result can be obtained.

3.2. Let \(K^*(t, \xi)\) be non-negative and non-increasing in \(t\) on \((0, \pi)\) for \(\xi \in E\), and satisfy the same assumptions as \(K(t, \xi)\) in §1, above 1.1, and let
\[|K(t, \xi)| \leq K^*(t, \xi) \quad (t \in (0, \pi), \quad \xi \in E). \]
Suppose that conditions (2), (4) for \(K(t, \xi)\) and condition (3) for \(K^*(t, \xi)\) hold. Then the relation
\[\lim_{h \to 0} \frac{1}{h} \int_{x_0}^{x_0 + h} |f(t) - f(x_0)| dt = 0 \quad (f \in L_2) \]
implies (5), i.e.
\[\lim_{(x, \xi) \to (x_0, \xi_0)} \int_{-\pi}^{\pi} f(t)K(t - x, \xi) dt = f(x_0), \]
as \((x, \xi) \to (x_0, \xi_0)\) on a plane set \(Z^*\) in which the function
\[\lambda^*(x, \xi) = (x-x_0)K^*(0, \xi) \quad (\xi \in E) \]
is bounded (cf. [3], p. 246).
4. Differentiation of singular integrals. The following theorem hold.

4.1. Let the function $K(t, \xi)$ and its derivatives $\partial^r K(t, \xi)/\partial t^r$ ($\nu = 1, 2, \ldots, r$) be continuous with respect to t on $(-\infty, \infty)$ for every fixed $\xi \in E$. Suppose that conditions (2), (3), (4) together with (8) and (9) lim sup $\sup_{t \in E} \left| \frac{\partial^r K(t, \xi)}{\partial t^r} \right| dt < \infty$

and

(9) $\lim_{\delta \to 0} \sup_{\delta < t < \pi} \left| \frac{\partial^r K(t, \xi)}{\partial t^r} \right| = 0 \quad \text{for all } \delta > 0 \ (\delta \leq \pi, \xi \in E)$

are satisfied. Denote by S a set of points $(x, \xi) (\xi \in E)$ such that

\[|x - x_0|^r \int_0^\pi \sin^{-r} t \left| \frac{\partial^r K(t, \xi)}{\partial t^r} \right| dt \leq C_r \quad (r = 1, 2, \ldots, r), \]

x_0 being fixed, where C_r are certain positive constants. Then, if the function $f \in L^2_{2\pi}$ possesses at x_0 a finite derivative $f^{(\nu)}(x_0)$, we have

(11) $\lim_{(x, \xi) \to (x_0, \xi_0)} \frac{\partial^r U(x, \xi, f)}{\partial x^r} = \lim_{(x, \xi) \to (x_0, \xi_0)} \int_{-\pi}^\pi f(t) \frac{\partial^r K(t - x, \xi)}{\partial t^r} dt = f^{(\nu)}(x_0)$

as $(x, \xi) \to (x_0, \xi_0)$ on S (cf. [4], II, pp. 60-61, [1], pp. 419-420).

Proof. We construct a function

\[g(t) = \sum_{n=0}^r a_n \sin^n(t - x_0) \quad (-\pi < x_0 < \pi) \]

such that

\[g^{(p)}(x_0) = f^{(p)}(x_0) \quad (p = 0, 1, \ldots, r). \]

In this case, the coefficients a_n are certain linear combinations of the derivatives $f^{(m)}(x_0)$ ($m \leq n$), e.g. $a_0 = f(x_0)$, $a_1 = f'(x_0)$, $a_2 = \frac{1}{2!} f''(x_0)$, $a_3 = \frac{1}{3!} [f'(x_0) + f'''(x_0)]$, $a_4 = \frac{1}{4!} [4f''(x_0) + f^{IV}(x_0)]$, $a_5 = \frac{1}{5!} [9f''(x_0) + 10f'''(x_0) + f^{V}(x_0)]$ etc. It is easy to observe that $\omega(t) = [f(t) - g(t)]/\sin^r(t - x_0) \to 0$ as $t \to x_0$ ([2], pp. 25-27).

Obviously,

\[\frac{\partial^r U(x, \xi, g)}{\partial x^r} = (-1)^r \int_{-\pi}^\pi g(t) \frac{\partial^r K(t - x, \xi)}{\partial t^r} dt = \int_{-\pi}^\pi g^{(r)}(t) K(t - x, \xi) dt. \]
Hence, by 1.1,
\[
\lim_{(x, \xi) \to (x_0, \xi_0)} \frac{\partial^r U(x, \xi, g)}{\partial x^r} = g(r)(x_0) = f(r)(x_0) \quad \text{as} \quad (x, \xi) \to (x_0, \xi_0).
\]

Since
\[
\frac{\partial^r U(x, \xi, f)}{\partial x^r} = \frac{\partial^r U(x, \xi, g)}{\partial x^r} + \frac{\partial^r U(x, \xi, f-g)}{\partial x^r},
\]

it is sufficient to show that the second term on the right-hand side of the last identity tends to zero as \((x, \xi) \to (x_0, \xi_0)\) on \(S\). But
\[
H(x, \xi) = \frac{\partial^r U(x, \xi, f-g)}{\partial x^r} = (-1)^r \int_{-\pi}^{\pi} \omega(t) \sin^r(t-x_0) \frac{\partial^r K(t-x, \xi)}{\partial t^r} \, dt
\]
and \(\lim_{t \to x_0} \omega(t) = 0\). Thus, for any \(\epsilon > 0\) there is a \(\delta > 0\) \((\delta \leq \min(\pi - x_0, \pi + x_0))\) such that
\[
|H(x, \xi)| \leq \epsilon \int_{x_0-\delta}^{x_0+\delta} \left| \sin^r(t-x_0) \frac{\partial^r K(t-x, \xi)}{\partial t^r} \right| dt +
\]
\[
+ \left| \int_{-\pi}^{x_0-\delta} + \int_{x_0+\delta}^{\pi} \omega(t) \sin^r(t-x_0) \frac{\partial^r K(t-x, \xi)}{\partial t^r} \, dt \right|
\]
\[
= \epsilon I_1(x, \xi) + |I_2(x, \xi)|.
\]

Evidently,
\[
I_1(x, \xi) \leq \int_{-\pi}^{\pi} \left| \sin^r(t+x-x_0) \frac{\partial^r K(t, \xi)}{\partial t^r} \right| \, dt
\]
\[
\leq \int_{-\pi}^{\pi} \left| \sin^r t \right| \frac{\partial^r K(t, \xi)}{\partial t^r} \, dt + \int_{-\pi}^{\pi} \left| \sin^r(t+x-x_0) - \sin^r t \right| \frac{\partial^r K(t, \xi)}{\partial t^r} \, dt
\]
\[
= J_1(\xi) + J_2(x, \xi).
\]

In view of (8), there is a constant \(C\) such that \(J_1(\xi) \leq C (\xi \epsilon E)\). Applying the formulas \(a^n - b^n = (a-b)(a^{n-1} + a^{n-2}b + \ldots + b^{n-1})\), \(\sin a - \sin b = 2 \cos [(a+b)/2] \sin [(a-b)/2]\), and taking into account (10), we can show that \(J_2(x, \xi) \leq P\) on \(S\), where \(P\) is a constant; whence \(I_1(x, \xi) < C + P\) on \(S\).
Let \(|x - x_0| < \frac{1}{2} \delta \). Since \(\gamma(t) = \omega(t) \sin(\tau(t - x_0)) \) is Lebesgue-integrable in \((-\pi, \pi)\),

\[
|I_3(x, \xi)| \leq \int_{x_0 - \delta}^{x_0 + \delta} |\gamma(t)| \left| \frac{\partial^r K(t - x, \xi)}{\partial t^r} \right| dt \leq \sup_{\delta \pi < u < \pi} \left| \frac{\partial^r K(u, \xi)}{\partial u^r} \right| \int_{-\pi}^{\pi} |\gamma(t)| dt.
\]

Hence, by (9), \(\lim I_3(x, \xi) = 0 \) as \((x, \xi) \to (x_0, \xi_0) \). Similarly, \(\lim I_2(x, \xi) = 0 \). The proof is completed.

Finally, we remark that from 1.1, 3.1 and 4.1 theorems 1, 3, 2 of [1], pp. 417-23, follow, respectively. An analogical result can be obtained for Cesàro's integrals ([4], II, pp. 60-61).

References