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Density of analytic polynomials in abstract Hardy spaces

Alexei Yu. Karlovich

Summary. Let X be a separable Banach function space on the unit circle

T and let H[X] be the abstract Hardy space built upon X. We show that

the set of analytic polynomials is dense in H[X] if the Hardy–Littlewood
maximal operator is bounded on the associate space X′. Fis result is

specified to the case of variable Lebesgue spaces.
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1. Introduction

For 1 ⩽ p ⩽ ∞, let Lp ∶= Lp(T) be the Lebesgue space on the unit circle T ∶= {z ∈ C ∶ ∣z∣ =

1} in the complex plane C. For f ∈ L1
, let

f̂ (n) ∶=
1

2π
∫

π

−π
f (e iφ)e−inφ dφ, n ∈ Z,

be the sequence of the Fourier coeÚcients of f . Fe classical Hardy spaces H p
are given

by

H p ∶= { f ∈ Lp ∶ f̂ (n) = 0, n < 0}.
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A function of the form

q(t) =
n
∑
k=0
αk t

k
, t ∈ T, α0 , . . . , αn ∈ C,

is said to be an analytic polynomial on T. Fe set of all analytic polynomials is denoted

by PA. It is well known that the set PA is dense in H p
whenever 1 ⩽ p < ∞ (see, e.g., [3,

Chap. III, Corollary 1.7(a)]).

Let X be a Banach space continuously embedded in L1
. Following [17, p. 877], we will

consider the abstract Hardy space H[X] built upon the space X, which is defined by

H[X] ∶= { f ∈ X ∶ f̂ (n) = 0, n < 0}.

It is clear that if 1 ⩽ p ⩽ ∞, then H[Lp] is the classical Hardy space H p
. Fe aim of this

note is to find suÚcient conditions for the density of the set PA in the space H[X] when

X falls into the class of so-called Banach function spaces.

We equip T with the normalized Lebesgue measure dm(t) = ∣dt∣/(2π). Let L0
be

the space of all measurable complex-valued functions on T. As usual, we do not distin-

guish functions, which are equal almost everywhere (for the latter we use the standard

abbreviation a.e.). Let L0

+ be the subset of functions in L0
whose values lie in [0,∞]. Fe

characteristic function of a measurable set E ⊂ T is denoted by χE .

Following [1, Chap. 1, Definition 1.1], a mapping ρ∶ L0

+ → [0,∞] is called a Banach

function norm if for all functions f , g , fn ∈ L
0

+ with n ∈ N, for all constants a ⩾ 0, and for

all measurable subsets E of T, the following properties hold:
(A1) ρ( f ) = 0⇔ f = 0 a.e., ρ(a f ) = aρ( f ), ρ( f + g) ⩽ ρ( f ) + ρ(g);

(A2) 0 ⩽ g ⩽ f a.e.⇒ ρ(g) ⩽ ρ( f ) (the lattice property);

(A3) 0 ⩽ fn ↑ f a.e.⇒ ρ( fn) ↑ ρ( f ) (the Fatou property);

(A4) m(E) < ∞⇒ ρ(χE) < ∞;

(A5) ∫E f (t)dm(t) ⩽ CEρ( f ) with the constant CE ∈ (0,∞) that may depend on E

and ρ, but is independent of f .

When functions di×ering only on a set of measure zero are identified, the set X of all

functions f ∈ L0
for which ρ(∣ f ∣) < ∞ is called a Banach function space. For each f ∈ X,

the norm of f is defined by ∥ f ∥X ∶= ρ(∣ f ∣). Fe set X under the natural linear space

operations and under this norm becomes a Banach space (see [1, Chap. 1, Feorems 1.4

and 1.6]). If ρ is a Banach function norm, its associate norm ρ′ is defined on L0

+ by

ρ′(g) ∶= sup{∫
T
f (t)g(t)dm(t) ∶ f ∈ L0

+, ρ( f ) ⩽ 1} , g ∈ L0

+.

Fe associate norm itself is a Banach function norm [1, Chap. 1,Feorem 2.2].Fe Banach

function space X′
determined by the Banach function norm ρ′ is called the associate space
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(Köthe dual) of X.Fe associate space X′
can be viewed as a subspace of the (Banach) dual

space X∗
.

Fe distribution function m f of an a.e. finite function f ∈ L
0
is defined by

m f (λ) ∶= m{t ∈ T ∶ ∣ f (t)∣ > λ}, λ ⩾ 0.

Two a.e. finite functions f , g ∈ L0
are said to be equimeasurable if

m f (λ) = mg(λ), λ ⩾ 0.

Fe non-increasing rearrangement of an a.e. finite function f ∈ L0
is defined by

f ∗(x) ∶= inf{λ ∶ m f (λ) ⩽ x}, x ⩾ 0.

We refer to [1, Chap. 2, Section 1] and [11, Chap. II, Section 2] for properties of distribu-

tion functions and non-increasing rearrangements. A Banach function space X is called

rearrangement-invariant if for every pair of a.e. finite equimeasurable functions f , g ∈ L0
,

one has the following property: if f ∈ X, then g ∈ X and the equality ∥ f ∥X = ∥g∥X holds.

Lebesgue spaces Lp
, 1 ⩽ p ⩽ ∞, as well as more general Orlicz spaces, Lorentz spaces, and

Marcinkiewicz spaces are classical examples of rearrangement-invariant Banach function

spaces (see [1, 11]). For more recent examples of rearrangement-invariant spaces, like Ce-

sàro, Copson, and Tandori spaces, we refer to the paper by Maligranda and Leśnik [13].

One of our motivations for this work is the recent progress in the study of harmonic

analysis in the setting of variable Lebesgue spaces [4, 6, 10]. Let P(T) be the set of all

measurable functions p∶T→ [1,∞]. For p ∈P(T), put

Tp(⋅)
∞ ∶= {t ∈ T ∶ p(t) = ∞}.

For a measurable function f ∶T→ C, consider

ρp(⋅)( f ) ∶= ∫
T∖Tp(⋅)

∞

∣ f (t)∣p(t)dm(t) + ∥ f ∥L∞(Tp(⋅)
∞ )

.

In accordance with [4, Definition 2.9], the variable Lebesgue space Lp(⋅)
is defined as the

set of all measurable functions f ∶T → C such that ρp(⋅)( f /λ) < ∞ for some λ > 0. Fis

space is a Banach function space with respect to the Luxemburg–Nakano norm given by

∥ f ∥Lp(⋅) ∶= inf{λ > 0 ∶ ρp(⋅)( f /λ) ⩽ 1}

(see, e.g., [4, Feorems 2.17, 2.71 and Section 2.10.3]). If p ∈ P(T) is constant, then Lp(⋅)

is nothing but the standard Lebesgue space Lp
. If p ∈ P(T) is not constant, then Lp(⋅)

is

not rearrangement-invariant [4, Example 3.14]. Variable Lebesgue spaces are oýen called

Nakano spaces.We refer toMaligranda’s paper [14] for the role of Hidegoro Nakano in the
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study of variable Lebesgue spaces. Fe associate space of Lp(⋅)
is isomorphic to the space

Lp′(⋅)
, where p′ ∈ P(T) is defined by the equation 1/p(t) + 1/p′(t) = 1 for a.e. t ∈ T with

the usual convention 1/∞ ∶= 0 [6, Feorem 3.2.13]. For p ∈P(T), put

p− ∶= ess inf
t∈T

p(t), p+ ∶= ess sup

t∈T
p(t).

Fe variable Lebesgue space Lp(⋅)
is separable if and only if p+ < ∞ (see, e.g., [4, Fe-

orem 2.78]).

Fe following result is considered folklore.

1.0.1. Feorem. Let X be a separable rearrangement-invariant Banach function space on T.
Fen the set of analytic polynomialsPA is dense in the abstract Hardy space H[X]. Moreover,

for every f ∈ H[X], there is a sequence of analytic polynomials {pn} such that ∥pn∥X ⩽

∥ f ∥X for all n ∈ N and pn → f in the norm of X as n →∞.

Surprisingly enough, we could not find in the literature eitherFeorem 1.0.1 explicitly

stated or any result on the density ofPA in abstract Hardy spacesH[X] in the case when X

is an arbitrary Banach function space beyond the class of rearrangement-invariant spaces.

Fe aim of this note is to fill in this gap.

Given f ∈ L1
, the Hardy–Littlewood maximal function is defined by

(M f )(t) ∶= sup

I∋t

1

m(I)
∫
I
∣ f (τ)∣dm(τ), t ∈ T,

where the supremum is taken over all arcs I ⊂ T containing t ∈ T. Fe operator f ↦ M f

is called the Hardy–Littlewood maximal operator.

1.0.2. Feorem (Main result). Suppose X is a separable Banach function space on T. If the
Hardy–Littlewood maximal operator M is bounded on the associate space X′, then the set

of analytic polynomials PA is dense in the abstract Hardy space H[X].

To illustrate this result in the case of variable Lebesgue spaces, we will need the follo-

wing classes of variable exponents. Following [4, Definition 2.2], one says that r∶T→ R is

locally log-Hölder continuous if there exists a constant C0 > 0 such that

∣r(x) − r(y)∣ = C0/(− log ∣x − y∣)) for all x , y ∈ T, ∣x − y∣ < 1/2.

Fe class of all locally log-Hölder continuous functions is denoted by LH0(T). If p+ < ∞,

then p ∈ LH0(T) if and only if 1/p ∈ LH0(T). By [4,Feorem4.7], if p ∈P(T) is such that

1 < p− and 1/p ∈ LH0(T), then theHardy–Littlewoodmaximal operatorM is bounded on

Lp(⋅)
. Fis condition was initially referred to as “almost necessary” (see [4, Section 4.6.1]

for further details). However, Lerner [12] constructed an example of a discontinuous va-

riable exponent such that the Hardy–Littlewood maximal operator is bounded on Lp(⋅)
.
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Kapanadze and Kopaliani [7] developed Lerner’s ideas further. Fey considered the

following class of variable exponents. Recall that a function f ∈ L1
belongs to the space

BMO if

∥ f ∥∗ ∶= sup

I⊂T

1

m(I)
∫
I
∣ f (t) − fI ∣dm(t) < ∞,

where fI is the integral average of f on the arc I and the supremum is taken over all arcs

I ⊂ T. For f ∈ BMO, put

γ( f , r) ∶= sup

m(I)⩽r

1

m(I)
∫
I
∣ f (t) − fI ∣dm(t).

Let VMO1/∣ log ∣
be the set of functions f ∈ BMO such that

γ( f , r) = o(1/∣ log r∣) as r → 0.

Note that VMO1/∣ log ∣
contains discontinuous functions. We will say that p ∈ P(T) be-

longs to the Kapanadze-Kopaliani class K(T) if 1 < p− ⩽ p+ < ∞ and p ∈ VMO1/∣ log ∣
.

It is shown in [7, Feorem 2.1] that if p ∈ K(T), then the Hardy–Littelwood maximal

operator M is bounded on the variable Lebesgue space Lp(⋅)
.

1.0.3. Corollary. Suppose p ∈ P(T). If p+ < ∞ and p ∈ LH0(T) or if p′ ∈ K(T), then the

set of analytic polynomials PA is dense in the abstract Hardy space H[Lp(⋅)] built upon the

variable Lebesgue space Lp(⋅).

Fe paper is organized as follows. In Section 2, we prove that the separability of a Ba-

nach function space X is equivalent to the density of the set of trigonometric polynomials

P in X and to the density of the set of all continuous functions C in X. Further, we recall

a pointwise estimate of the Fejér means f ∗ Kn , where Kn is the n-th Fejér kernel, by the

Hardy–Littlewood maximal function M f . In Section 3 we show that the norms of the

operators Fn f = f ∗ Kn are uniformly bounded on a Banach function space X if X is

rearrangement-invariant or if the Hardy–Littlewood maximal operator is bounded on X′
.

Moreover, if X is rearrangement-invariant, then ∥Fn∥B(X) ⩽ 1 for all n ∈ N. Further, we
prove that under the assumptions of Feorem 1.0.1 or 1.0.2, ∥ f ∗ Kn − f ∥X → 0 as n →∞.

It remains to observe that f ∗ Kn ∈ PA if f ∈ H[X], which will complete the proof of

Feorems 1.0.1 and 1.0.2.



136 Alexei Yu. Karlovich

2. Preliminaries

2.1. Elementary lemma. We start with the following elementary lemma, whose proof can

be found, e.g., in [3, Chap. III, Proposition 1.6(a)]. Here and in what follows, the space of

all bounded linear operators on a Banach space E will be denoted by B(E).

2.1.1. Lemma. Let E be a Banach space and let {Tn} be a sequence of bounded linear opera-

tors on E such that

sup

n∈N
∥Tn∥B(E) < ∞.

If D is a dense subset of E and for all x ∈ D,

∥Tnx − x∥E → 0 as n →∞, (1)

then (1) holds for all x ∈ E.

2.2. Density of continuous function and trigonometric polynomials in Banach function

spaces. A function of the form

q(t) =
n
∑
k=−n

αk t
k
, t ∈ T, α−n , . . . , αn ∈ C,

is said to be a trigonometric (or Laurent) polynomial on T. Fe set of all trigonometric

polynomials is denoted by P .

2.2.1. Lemma. Let X be a Banach function space on T. Fe following statements are equiva-

lent:

(i) the set P of all trigonometric polynomials is dense in X;

(ii) the space C of all continuous functions on T is dense in X;

(iii) the Banach function space X is separable.

Proof. Fe proof is developed in analogy with [8, Lemma 1.3].

(i)⇒ (ii) is trivial because P ⊂ C ⊂ X.

(ii)⇒ (iii). Since C is separable and C ⊂ X is dense in X, we conclude that X is separable.

(iii) ⇒ (i). Assume that X is separable and P is not dense in X. Fen by a corollary of

the Hahn–Banach theorem (see, e.g., [2, Chap. 7, Feorem 4.2]), there exists a nonzero

functional Λ ∈ X∗
such that Λ(p) = 0 for all p ∈ P . Since X is separable, it follows

from [1, Chap. 1, Corollaries 4.3 and 5.6] that the Banach dual X∗
of X is canonically
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isometrically isomorphic to the associate space X′
. Hence there exists a nonzero function

h ∈ X′ ⊂ L1
such that

∫
T
p(t)h(t)dm(t) = 0 for all p ∈ P .

Taking p(t) = tn for n ∈ Z, we obtain that all Fourier coeÚcients of h ∈ L1
vanish, which

implies that h = 0 a.e. on T by the uniqueness theorem of the Fourier series (see, e.g., [9,

Chap. I, Feorem 2.7]). Fis contradiction proves that P is dense in X.

2.3. Pointwise estimate for the Fejér means. Recall that L1
is a commutative Banach

algebra under the convolution multiplication defined for f , g ∈ L1
by

( f ∗ g)(e iθ) =
1

2π
∫

π

−π
f (e iθ−iφ)g(e iφ)dφ, e iθ ∈ T.

For n ∈ N, the function

Kn(e
iθ
) ∶=

n
∑
k=−n

(1 −
∣k∣

n + 1

)e iθ k =
1

n + 1

(
sin

n+1
2

θ

sin
θ
2

)

2

, e iθ ∈ T,

is called the n-th Fejér kernel. It is well-known that ∥Kn∥L1 ⩽ 1. For f ∈ L1
, the n-th Fejér

mean of f is defined as the convolution f ∗ Kn . Fen

( f ∗ Kn)(e
iθ
) =

n
∑
k=−n

f̂ (k)(1 −
∣k∣

n + 1

)e iθ k , e iθ ∈ T (2)

(see, e.g., [9, Chap. I]). Fis means that if f ∈ L1
, then f ∗ Kn ∈ P . Moreover, if f ∈ H1 =

H[L1], then f ∗ Kn ∈ PA.

2.3.1. Lemma. For every f ∈ L1 and t ∈ T,

sup

n∈N
∣( f ∗ Kn)(t)∣ ⩽

π2

2

(M f )(t). (3)

Proof. Since ∣ sinφ∣ ⩾ 2∣φ∣/π for ∣φ∣ ⩽ π/2, we have for θ ∈ [−π, π],

Kn(e
iθ
) ⩽

π2

n + 1

sin
2 ( n+1

2
θ)

θ2

=
π2

4

(n + 1)
sin

2 ( n+1
2

θ)

( n+1
2

θ)
2

⩽
π2

4

(n + 1)min{1, (
n + 1

2

θ)
−2

}

⩽
π2

2

n + 1

1 + ( n+1
2

θ)
2
=∶ Ψn(θ).

(4)
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It is easy to see that

1

2π
∫

π

−π
Ψn(θ)dθ ⩽

π2

2

, n ∈ N. (5)

From [15, Lemma 2.11] and estimates (4–5) we immediately get estimate (3).

3. Proofs of the main results

3.1. Norm estimates for the Fejér means. First we consider the case of rearrangement-

-invariant Banach function spaces.

3.1.1. Lemma. Let X be a rearrangement-invariant Banach function space on T. Fen for

each n ∈ N, the operator Fn f = f ∗ Kn is bounded on X and

sup

n∈N
∥Fn∥B(X) ⩽ 1.

Proof. By [1, Chap. 3, Lemma 6.1], for every f ∈ X and every n ∈ N,

∥ f ∗ Kn∥X ⩽ ∥Kn∥L1∥ f ∥X .

It remains to recall that ∥Kn∥L1
⩽ 1 for all n ∈ N.

Now we will show the corresponding results for Banach function spaces for which

the Hardy–Littlewood maximal operator is bounded on X′
.

3.1.2. Feorem. Let X be a Banach function space on T such that the Hardy–Littlewood

maximal operator M is bounded on its associate space X′. Fen for each n ∈ N, the operator
Fn f = f ∗ Kn is bounded on X and

sup

n∈N
∥Fn∥B(X) ⩽ π2

∥M∥X′→X′ .

Proof. Fe idea of the proof is borrowed from the proof of [4, Feorem 5.1]. Fix f ∈ X

and n ∈ N. Since Kn ⩾ 0, we have ∣ f ∗ Kn ∣ ⩽ ∣ f ∣ ∗ Kn . Fen from the Lorentz-Luxemburg

theorem (see, e.g., [1, Chap. 1, Feorem 2.7]) we deduce that

∥ f ∗ Kn∥X ⩽ ∥ ∣ f ∣ ∗ Kn∥X = ∥ ∣ f ∣ ∗ Kn∥X′′

= sup{∫
T
(∣ f ∣ ∗ Kn)(t)∣g(t)∣dm(t) ∶ g ∈ X′

, ∥g∥X′ ⩽ 1} .

Hence there exists a function h ∈ X′
such that h ⩾ 0, ∥h∥X′ ⩽ 1, and

∥ f ∗ Kn∥X ⩽ 2∫
T
(∣ f ∣ ∗ Kn)(t)h(t)dm(t). (6)
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Taking into account that Kn(e
iθ) = Kn(e

−iθ) for all θ ∈ R, by Fubini’s theorem, we get

∫
T
(∣ f ∣ ∗ Kn)(t)h(t)dm(t) = ∫

T
(h ∗ Kn)(t)∣ f (t)∣dm(t).

From this identity and Hölder’s inequality for X (see, e.g., [1, Chap. 1, Feorem 2.4]), we

obtain

∫
T
(∣ f ∣ ∗ Kn)(t)h(t)dm(t) ⩽ ∥ f ∥X∥h ∗ Kn∥X′ . (7)

Applying Lemma 2.3.1 to h ∈ X′ ⊂ L1
, by the lattice property, we see that

∥h ∗ Kn∥X′ ⩽
π2

2

∥Mh∥X′ . (8)

Combining estimates (6–8) and taking into account that M is bounded on X′
and that

∥h∥X′ ⩽ 1, we arrive at

∥ f ∗ Kn∥X ⩽ π2
∥M∥X′→X′∥ f ∥X .

Hence

sup

n∈N
∥Fn∥B(X) = sup

n∈N
sup

f ∈X∖{0}

∥ f ∗ Kn∥X

∥ f ∥X
⩽ π2

∥M∥X′→X′ < ∞,

which completes the proof.

3.2. Convergence of the Fejér means in the norm. Fe following statement is at the heart

of the proof of the main results.

3.2.1.Feorem. Suppose X is a separable Banach function space onT. If X is rearrangement-

-invariant or the Hardy–Littlewood maximal operator is bounded on the associate space X′,

then for every f ∈ X,

lim
n→∞

∥ f ∗ Kn − f ∥X = 0. (9)

Proof. It is well known that for every f ∈ C,

lim
n→∞

∥ f ∗ Kn − f ∥C = 0

(see, e.g., [3, Chap. III, Feorem 1.1(a)] or [9, Feorem 2.11]). From the definition of the

Banach function space X it follows that C ⊂ X ⊂ L1
, where both embeddings are continu-

ous. Fen, for every f ∈ C, (9) is fulfilled. From Lemma 2.2.1 we know that the set C is

dense in the space X. By Lemma 3.1.1 andFeorem 3.1.2,

sup

n∈N
∥Fn∥B(X) < ∞,

where Fn f = f ∗ Kn . It remains to apply Lemma 2.1.1.
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Fis statement for rearrangement-invariant Banach function spaces is contained, e.g.,

in [5, p. 268]. Notice that the assumption of the separability of X is hidden there.

Nowwe formulate the corollary of the above theorem in the case of variable Lebesgue

spaces.

3.2.2. Corollary. Suppose p ∈ P(T). If p+ < ∞ and p ∈ LH0(T) or if p′ ∈ K(T), then for

every f ∈ Lp(⋅),

lim
n→∞

∥ f ∗ Kn − f ∥Lp(⋅) = 0.

For variable exponents p ∈P(T) satisfying p+ < ∞ and p ∈ LH0(T), this result was

obtained by Sharapudinov [16, Section 3.1]. For p′ ∈ K(T), the above corollary is new.

3.3. Proofs ofFeorems 1.0.1 and 1.0.2. If f ∈ H[X], then pn = f ∗ Kn ∈ PA for all n ∈ N
in view of (2). By Feorem 3.2.1, ∥pn − f ∥X → 0 as n →∞. Fus the set PA is dense in in

the abstract Hardy space H[X] built upon X.

Moreover, if X is a rearrangement-invariant Banach function space, then from Lem-

ma 3.1.1 it follows that ∥pn∥X ⩽ ∥ f ∥X for all n ∈ N.
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