Czasopismo
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
We develop the notion of the \((X_1,X_2)\)-summing power-norm based on a~Banach space \(E\), where \(X_1\) and \(X_2\) are symmetric sequence spaces. We study the particular case when \(X_1\) and \(X_2\) are Orlicz spaces \(\ell_\Phi\) and \(\ell_\Psi\) respectively and analyze under which conditions the \((\Phi, \Psi)\)-summing power-norm becomes a~multinorm. In the case when \(E\) is also a~symmetric sequence space \(L\), we compute the precise value of \(\|(\delta_1,\cdots,\delta_n)\|_n^{(X_1,X_2)}\) where \((\delta_k)\) stands for the canonical basis of \(L\), extending known results for the \((p,q)\)-summing power-norm based on the space \(\ell_r\) which corresponds to \(X_1=\ell_p\), \(X_2=\ell_q\), and \(E=\ell_r\).
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
Daty
wydano
2016
online
2016-10-13
Twórcy
autor
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ojs-doi-10_14708_cm_v56i1_1105