Czasopismo
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
Here it is proved that the space \(L^{1}\cap L^{\infty }\) equipped with the standard interpolation norm \(\left\Vert \cdot \right\Vert _{L^{1}\cap L^{\infty }}=\max \left\{ \left\Vert \cdot \right\Vert _{L^{1}},\left\Vert \cdot \right\Vert _{L^{\infty }}\right\} \) has the uniform \(\lambda \)-property if and only if \(\mu (T)\leq 1.\) Replacing the standard norm with an equivalent one \(\left\Vert \cdot \right\Vert _{L^{1}\cap L^{\infty }}^{\prime }= \) \(\left\Vert \cdot \right\Vert _{L^{1}}+\left\Vert \cdot \right\Vert _{L^{\infty }}\), a different result is obtained.: \((L^{1}\cap L^{\infty }, \left\Vert \cdot \right\Vert _{L^{1}\cap L^{\infty }}^{\prime } )\) has the uniform \(\lambda \)-property if and only if \(\mu (T)
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
Daty
wydano
2015
online
2016-05-25
Twórcy
autor
autor
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ojs-doi-10_14708_cm_v55i2_1122