Czasopismo
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
The distributivity law for a fuzzy implication \(I\colon [0,1]^2 \to [0,1]\) with respect to a fuzzy disjunction \(S\colon [0,1]^2 \to [0,1]\) states that the functional equation \( I(x,S(y,z))=S(I(x,y),I(x,z)) \) is satisfied for all pairs \((x,y)\) from the unit square. To compare some results obtained while solving this equation in various classes of fuzzy implications, Wanda Niemyska has reduced the problem to the study of the following two functional equations: \( h(\min(xg(y),1)) = \min(h(x)+ h(xy),1)\), \(x \in (0,1)\), \(y \in (0,1]\), and \( h(xg(y)) = h(x)+ h(xy)\), \(x,y \in (0, \infty)\), in the class of increasing bijections \(h\colon [0,1] \to [0,1]\) with an increasing function \(g\colon (0,1] \to [1, \infty)\) and in the class of monotonic bijections \(h\colon (0, \infty) \to (0, \infty)\) with a function \(g\colon (0, \infty) \to (0, \infty)\), respectively. A description of solutions in more general classes of functions (including nonmeasurable ones) is presented.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
Daty
wydano
2015
online
2016-05-25
Twórcy
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ojs-doi-10_14708_cm_v55i2_1118