PL EN

Preferencje
Język
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo

## Commentationes Mathematicae

2015 | 55 | 2 |
Tytuł artykułu

### On two functional equations connected with distributivity of fuzzy implications

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The distributivity law for a fuzzy implication $$I\colon [0,1]^2 \to [0,1]$$ with respect to a fuzzy disjunction $$S\colon [0,1]^2 \to [0,1]$$ states that the functional equation $$I(x,S(y,z))=S(I(x,y),I(x,z))$$ is satisfied for all pairs $$(x,y)$$ from the unit square. To compare some results obtained while solving this equation in various classes of fuzzy implications, Wanda Niemyska has reduced the problem to the study of the following two functional equations: $$h(\min(xg(y),1)) = \min(h(x)+ h(xy),1)$$, $$x \in (0,1)$$, $$y \in (0,1]$$, and $$h(xg(y)) = h(x)+ h(xy)$$, $$x,y \in (0, \infty)$$, in the class of increasing bijections $$h\colon [0,1] \to [0,1]$$ with an increasing function $$g\colon (0,1] \to [1, \infty)$$ and in the class of monotonic bijections $$h\colon (0, \infty) \to (0, \infty)$$ with a function $$g\colon (0, \infty) \to (0, \infty)$$, respectively. A description of solutions in more general classes of functions (including nonmeasurable ones) is presented.
Słowa kluczowe
EN
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
Daty
wydano
2015
online
2016-05-25
Twórcy
autor
autor
autor
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory