PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 54 | 2 |
Tytuł artykułu

Strong convergence of implicit iteration processes for nonexpansive semigroups in Banach spaces

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let \(C\) be a convex compact subset of a uniformly convex Banach space. Let \(\{T_t\}_{t \geq0}\) be a strongly-continuous nonexpansive semigroup on \(C\). Consider the iterative process defined by the sequence of equations $$x_{k+1} =c_k T_{t_{k+1}}(x_{k+1})+(1-c_k)x_k.$$ We prove that, under certain conditions on \(\{c_k\}\) and \(\{t_k\}\), the sequence \(\{x_k\}_{n=1}^\infty\) converges strongly to a common fixed point of the semigroup \(\{T_t\}_{t \geq0}\). There are known results on convergence of such iterative processes for nonexpansive semigroups in Hilbert spaces and Banach spaces with the Opial property, and also weak convergence results in Banach spaces that are simultaneously uniformly convex and uniformly smooth. In this paper, we do not assume the Opial property or uniform smoothness of the norm.
Rocznik
Tom
54
Numer
2
Opis fizyczny
Daty
wydano
2014
online
2014-12-15
Twórcy
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ojs-doi-10_14708_cm_v54i2_703
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.