Czasopismo
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we study the rate of approximation for the nonlinear sampling Kantorovich operators. We consider the case of uniformly continuous and bounded functions belonging to Lipschitz classes of the Zygmund-type, as well as the case of functions in Orlicz spaces. We estimate the aliasing errors with respect to the uniform norm and to the modular functional of the Orlicz spaces, respectively. The general setting of Orlicz spaces allows to deduce directly the results concerning the rate of convergence in \(L^p\)-spaces, \(1 \miu p\) < \(\infty\), very useful in the applications to Signal Processing. Others examples of Orlicz spaces as interpolation spaces and exponential spaces are discussed and the particular cases of the nonlinear sampling Kantorovich series constructed using Fej\'er and B-spline kernels are also considered.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
Daty
wydano
2013
online
2014-12-15
Twórcy
autor
autor
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ojs-doi-10_14708_cm_v53i2_792