EN
Let \(X\) be a Banach space. Let \(f(\cdot)\) be a real valued function defined on an open convex set \(\Omega \subset X^*\), where \(X^*\) as usual denote the conjugate space. We say that the function \(f(\cdot)\) is \(X$\)convex, if there is a set \(\Phi_f \subset X\) such that $$ f(x^*)= sup_{x \in \Phi_f, r \in \R} x^*(x)+r. \eqno{(1)}$$ In the paper it will be shown that if \(X\) is separable, then the function \(f(\cdot)\) is Frechet differentiable on a dense \(G_{\delta}\) set.