Czasopismo
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
We shall characterize the weak nearly uniform smoothness of the \(\psi\)-direct sum \((X_1\oplus \dots\oplus X_N)_\psi\) of \(N\) Banach spaces \(X_1,\dots,X_N\), where \(\psi\) is a convex function satisfying certain conditions on the convex set \(\Delta_N = \{(s_1 ,\dots , s_{N-1})\in \mathbb{R}_+^{N-1} : \sum_{i=1}^{N-1} s_i \leq 1\). To do this a class of convex functions which yield \(\ell_1\)-like norms will be introduced. We shall apply our result to the fixed point property for nonexpansive mappings (FPP). In particular an example will be presented which indicates that there are plenty of Banach spaces with FPP failing to be uniformly non-square.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
Daty
wydano
2012
online
2017-12-19
Twórcy
autor
autor
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ojs-doi-10_14708_cm_v52i2_5335