ArticleOriginal scientific text

Title

Weak nearly uniform smoothness of the ψ-direct sums (X1XN)ψ

Authors ,

Abstract

We shall characterize the weak nearly uniform smoothness of the ψ-direct sum (X1XN)ψ of N Banach spaces X1,,XN, where ψ is a convex function satisfying certain conditions on the convex set ΔN={(s1,,sN1)R+N1:i=1N1si1. To do this a class of convex functions which yield 1-like norms will be introduced. We shall apply our result to the fixed point property for nonexpansive mappings (FPP). In particular an example will be presented which indicates that there are plenty of Banach spaces with FPP failing to be uniformly non-square.

Keywords

absolute norm, convex function, ψ-direct sum of Banach spaces, weak nearly uniform smoothness, Garcı́a-Falset coefficient, Schur property, fixed point property
Main language of publication
English
Published
2012
Published online
2017-12-19
Exact and natural sciences