PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 52 | 1 |
Tytuł artykułu

Correspondences between ideals and \(z\)-filters for rings of continuous functions between \(C^∗\) and \(C\)

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let \(X\) be a completely regular topological space. Let \(A(X)\) be a ring of continuous functions between \(C^∗(X)\) and \(C(X)\), that is, \(C^∗(X) \subset A(X) \subset C(X)\). In [9], a correspondence \(\mathcal{Z}_A\) between ideals of \(A(X)\) and \(z\)-filters on \(X\) is defined. Here we show that \(\mathcal{Z}_A\) extends the well-known correspondence for \(C^∗(X)\) to all rings \(A(X)\). We define a new correspondence \(\mathcal{Z}_A\) and show that it extends the well-known correspondence for \(C(X)\) to all rings \(A(X)\). We give a formula that relates the two correspondences. We use properties of \(\mathcal{Z}_A\) and \(\mathcal{Z}_A\) to characterize \(C^∗(X)\) and \(C(X)\) among all rings \(A(X)\). We show that \(\mathcal{Z}_A\) defines a one-one correspondence between maximal ideals in \(A(X)\) and the \(z\)-ultrafilters in \(X\).
Słowa kluczowe
Rocznik
Tom
52
Numer
1
Opis fizyczny
Daty
wydano
2012
online
2017-12-19
Twórcy
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ojs-doi-10_14708_cm_v52i1_5323
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.