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1. Introduction. Chaundy and Jolliffe [1] proved the following classical result
(see also [10]).

Theorem 1.1 Suppose that bn ≥ bn+1 and bn → 0. Then a necessary and sufficient
condition for the uniform convergence of the series

(1)

∞∑

n=1

bn sinnk

is nbn → 0.

In [5] Leindler defined a new class of sequences in the following way:

Definition 1.2 Let 
 := (
n) be a positive sequence. A null sequence c := (cn)
of real numbers satisfying the inequality

∞∑

n=m

∣cn − cn+1∣ ≤ K (c) 
m, m = 1, 2, ...

with a positive constant K (c) is said to be a sequence of 
 Rest Bounded Variation,
in symbol: c ∈ 
RBV S.
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If 
n ≡ cn and cn > 0, then we call the sequence c the Rest Bounded Variation
Sequence; and briefly we write c ∈ RBV S. In [6] L. Leindler introduced the class
of Mean Rest Bounded Variation Sequences (MRBV S), where 
 is defined by a
certain arithmetical mean of the sequence c, e.g.,

(2) 
m :=
1

m

m∑

n≥m/2
cn

It is easy to see that the class MRBV S includes the class RBV S, consequently
the classes of almost monotone and monotone sequences, too.

In [3] L. Leindler generalized above theorem to the class RBV S. Namely, he
proved the following theorems.

Theorem 1.3 If a sequence b = (bn) belongs to the class RBV S, then the condition
nbn → 0 as n→∞ is both necessary and sufficient for the uniform convergence of
series (1).

Theorem 1.4 If a sequence b = (bn) belongs to the class RBV S, then the condition
nbn = O (1) is both necessary and sufficient for the uniform boundedness of the
partial sums of series (1).

Theorem 1.5 Suppose that b ∈ RBV S. Then a necessary and sufficient condition
for the series (1) to be the Fourier series of a continuous function is nbn → 0.

We generalized these results to the class MRBV S and we proved that RBV S ∕=
MRBV S ( [8] ). In [4] L. Leindler shown that Theorem 1.3 and Theorem 1.4 are
true if (bn) belongs to the class 
RBV S but he proved that for the class 
RBV S
only a sufficient condition in those theorems is valid.

A nonnegative sequence c is said to be a sequence of Group Bounded Variation
(GBV S) if there exists a natural number N such that

2m∑

n=m

∣cn − cn+1∣ ≤ K (c) max
m≤n≤m+N

cn

holds for all m. In [2] R. Le and S. Zhou proved that Theorem 1.1 is true if a
sequence b ∈ GBV S.

Moreover, for a more general class

MVBV =

⎧
⎨
⎩an ∈ ℂ :

2m∑

n=m

∣an − an+1∣ ≤ C
[cm]∑

n=[m/c]

∣an∣
n

for some c > 1

⎫
⎬
⎭

a necessary and sufficient condition for the uniform convergence of the series were
proved in [9] and [7].
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It is clear that

MRBV S ⊆MVBV.

Furthermore (see [9])

GBV S ⊆MVBV

Let bn = 2+(−1)n

n2 . It is clear that nbn → 0 and by Weierstrass’s theorems the
series (1) is uniform convergence but the sequence (bn) is not monotonic and does
not belong to none of considered classes above (see Theorem 2.1 ).

In order to formulate our new results we define another such class of sequences
that the above sequence (bn) belongs to it.

Definition 1.6 Let 
 := (
n) be a positive sequence. A null sequence c := (cn) of
positive numbers is called 
 Rest Bounded Second Variation, briefly c ∈ 
RBSV S,
if it has the property

(3)

∞∑

n=m

∣cn − cn+2∣ ≤ K (c) 
m

for all natural numbers m.

If 
n ≡ cn and cn > 0, then we call the sequence c the Rest Bounded Second
Variation Sequence; and briefly we write c ∈ RBSV S. Consequently, if 
 is defined
by (2) we shall say that the sequence c is the Mean Rest Bounded Second Variation,
briefly c ∈MRBSV S.

It is clear that

RBSV S ⊂MRBSV S.

In the present paper we show that 
RBV S ⊂ 
RBSV S but RBV S ∕= RBSV S
and MRBV S ∕= MRBSV S. Moreover, we prove that Theorem 1.3, Theorem 1.4
and Theorem 1.5 are true if a sequence b belongs to MRBSV S.

2. Main results. We have the following results:

Theorem 2.1 The following properties are valid:
(i) 
RBV S ⊂ 
RBSV S,
(ii) there exists a sequence d =: (dn) , with the property that ndn → 0 as n→∞,

which belongs to the class MRBSV S but it does not belong to the class MVBV .
(iii) there exists a sequence a =: (an) , with the property that nan → 0 as n→∞,

which belongs to the class MRBSV S but it does not belong to the class RBSV S.

Theorem 2.2 If a sequence b = (bn) belongs to the class MRBSV S, then the
condition nbn → 0 as n → ∞ is both necessary and sufficient for the uniform
convergence of series (1).
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Theorem 2.3 If a sequence b = (bn) belongs to the class MRBSV S, then the
condition nbn = O (1) is both necessary and sufficient for the uniform boundedness
of the partial sums of series (1).

Theorem 2.4 Suppose that b ∈ MRBSV S. Then a necessary and sufficient con-
dition for the series (1) to be the Fourier series of a continuous function is nbn → 0.

Remark 2.5 By the embedding relation RBV S ⊂MRBSV S we can observe that
Theorem 1.3, Theorem 1.4 and Theorem 1.5 are the corollaries of Theorem 2.2,
Theorem 2.3 and Theorem 2.4, respectively.

Remark 2.6 By Theorem 2.1 (i) we derive that the results from [8] are the corol-
laries of Theorem 2.2, Theorem 2.3 and Theorem 2.4, too.

3. Proofs of Theorems. In this section we shall prove our results.

3.1. Proof of Theorem 2.1.
(i) Let (cn) ∈ 
RBV S. Then for all m

∞∑

n=m

∣cn − cn+2∣ ≤
∞∑

n=m

(∣cn − cn+1∣+ ∣cn+1 − cn+2∣)

≤ 2
∞∑

n=m

∣cn − cn+1∣ ≤ 2K (c) 
m

and (cn) ∈ 
RBSV S.

(ii) Let dn = 2+(−1)n

n2 . It is clear that ndn → 0 as n→∞.
Now, we show that the sequence (dn) does not belong to the class MVBV .
Let Am = {n, m ≤ n ≤ 2m and n is even}

2m∑

n=m

∣dn − dn+1∣ =
2m∑

n=m

∣∣∣∣∣
2 + (−1)

n

n2
− 2 + (−1)

n+1

(n+ 1)
2

∣∣∣∣∣

=
2m∑

n=m

∣∣∣∣∣
4n+ 4 + (−1)

n (
2n2 + 2n+ 1

)

n2 (n+ 1)
2

∣∣∣∣∣

≥
∑

n∈Am

2n2 + 6n+ 5

n2 (n+ 1)
2 ≥

∑

n∈Am

1

n2
≥ 1

4m

and since

[cm]∑

n=[m/c]

∣dn∣
n
≤ c

m

[cm]∑

n=[m/c]

2 + (−1)
n

n2
≤ c

m

[cm]∑

n=[m/c]

3

n2
≪ 1

m2
,
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the inequality
2m∑

n=m

∣dn − dn+1∣ ≤ K (d)

[cm]∑

n=[m/c]

∣dn∣
n

does not hold, that is, (dn) does not belong to MVBV and consequently to RBV S,
MRBV S and GBV S.

Finally, we show that the sequence (dn) belongs to MRBSV S.
For all m we have

∞∑

n=m

∣dn − dn+2∣ =
∞∑

n=m

∣∣∣∣∣
2 + (−1)

n

n2
− 2 + (−1)

n+2

(n+ 2)
2

∣∣∣∣∣

=
∞∑

n=m

4 (2 + (−1)
n
) (n+ 1)

n2 (n+ 2)
2 ≤ 12

∞∑

n=m

1

n3
≪ 1

m2
≤ 2 + (−1)

m

m2
= dm

and (dn) ∈ RBSV S. Since RBSV S ⊂MRBSV S we get that (dn) ∈MRBSV S.
(iii) Denote by �m := 2m for m = 1, 2, 3, ... and define a sequence (an) by the

following formulas a1 = 1 and

an :=
1 +m+ (−1)

n
m

m2�m
if �m ≤ n < �m+1.

It is clear that ndn → 0 as n → ∞. Namely, for any n > 2 there exists a natural
number m such that �m ≤ n < �m+1. Hence

nan ≤ �m+1
1 +m+ (−1)

n+1
m

m2�m
≤ 2 (1 + 2m)

m2
≤ 6

m
≤ 6

lnn/2
.

Since the sequence 6
lnn/2 → 0 as n→∞, we obtain that nan → 0 as n→∞.

Now, we show that the sequence (an) does not belong to the class RBSV S.
Namely, for m ≥ 2 we have

∞∑

k=�m+1

∣ak − ak+2∣ ≥
�m+1−2∑

k=�m+1

∣ak − ak+2∣ =
�m+1−3∑

k=�m+1

∣ak − ak+2∣

+
∣∣a�m+1−2 − a�m+1

∣∣ =

∣∣∣∣
1 + 2m

m2�m
− 1 + 2 (m+ 1)

(m+ 1)�m+1

∣∣∣∣

=
2m3 + 7m2 + 8m+ 2

2m2 (m+ 1)
2
�m

≥ 1

m�m

and since a�m+1 = 1
m2�m

, the inequality

∞∑

k=n

∣ak − ak+2∣ ≤ K (a) an

does not hold, that is, (an) does not belong to RBSV S.
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Next, we prove that the sequence (an) belongs to the class MRBSV S.
Let n ≥ 2. Then for any n there exist m ≥ 1 and r = 0, 1, 2..., �m − 1 such that

n = �m + r.

If r < �m − 1, then

∞∑

k=2n

∣ak − ak+2∣ =
∞∑

k=�m+1+2r

∣ak − ak+2∣

=

�m+2−3∑

k=�m+1+2r

∣ak − ak+2∣+
∣∣∣a�m+2

−2 − a�m+2

∣∣∣+
∣∣∣a�m+2

−1 − a�m+2+1

∣∣∣

∞∑

s=0

⎛
⎝

�m+3+s−3∑

k=�m+2+s+2r

∣ak − ak+2∣

+
∣∣∣a�m+3+s

−2 − a�m+3+s

∣∣∣+
∣∣∣a�m++3+s

−1 − a�m+3+s+1

∣∣∣
)

and if r = �m − 1, then

∞∑

k=2n

∣ak − ak+2∣ =
∞∑

k=�m+2−2

∣ak − ak+2∣

=
∣∣∣a�m+2

−2 − a�m+2

∣∣∣+
∣∣∣a�m+2

−1 − a�m+2+1

∣∣∣

∞∑

s=0

⎛
⎝

�m+3+s−3∑

k=�m+2+s+2r

∣ak − ak+2∣

+
∣∣∣a�m+3+s

−2 − a�m+3+s

∣∣∣+
∣∣∣a�m++3+s

−1 − a�m+3+s+1

∣∣∣
)
.

Therefore
∞∑

k=2n

∣ak − ak+2∣ =
∣∣∣∣∣

1 + 2 (m+ 1)

(m+ 1)
2
�m+1

− 1 + 2 (m+ 2)

(m+ 2)
2
�m+2

∣∣∣∣∣

+

∣∣∣∣∣
1

(m+ 1)
2
�m+1

− 1

(m+ 2)
2
�m+2

∣∣∣∣∣

+

∞∑

s=0

(∣∣∣∣∣
1 + 2 (m+ 2 + s)

(m+ 2 + s)
2
�m+2+s

− 1 + 2 (m+ 3 + s)

(m+ 3 + s)
2
�m+3+s

∣∣∣∣∣
∣∣∣∣∣

1

(m+ 2 + s)
2
�m+2+s

− 1

(m+ 3 + s)
2
�m+3+s

∣∣∣∣∣

)

≤ m+ 2

(m+ 1)
2
�m

+
∞∑

s=0

m+ s+ 3

(m+ 2 + s)
2
�m+1+s
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≤ 2

m�m
+

1

m�m

∞∑

s=0

1

2s
=

4

m�m
.

Let

Am,r : = {k;�m + r ≤ k ≤ �m+1 + 2r and k is even} ,
Bm,r : = {k;�m + r ≤ k < �m+1 and k is even} ,
Cm,r : = {k;�m+1 ≤ k ≤ �m+1 + 2r and k is even} .

Then ∞∑

k=2n

∣ak − ak+2∣ ≤
8

�m + r + 1

∑

k∈Am,r

1

m�m

≤ 8

�m + r + 1

⎛
⎝ ∑

k∈Bm,r

1

m�m
+ 4

∑

k∈Cm,r

1

(m+ 1)�m+1

⎞
⎠

≤ 8

�m + r + 1

⎛
⎝1

2

∑

k∈Bm,r

1 + 2m

m2�m
+ 2

∑

k∈Cm,r

1 + 2 (m+ 1)

(m+ 1)�m+1

⎞
⎠

(4) ≤ 8

�m + r + 1

⎛
⎝1

2

�m+1−1∑

k=�m+r

ak + 2

�m+1+2r∑

k=�m+1

ak

⎞
⎠ ≤ 16

n+ 1

2n∑

k=n

ak.

If n = 1, then by (4)

∞∑

k=2

∣ak − ak+2∣ =
3∑

k=2

∣ak − ak+2∣+
∞∑

k=4

∣ak − ak+2∣

(5) ≤
3∑

k=2

∣ak − ak+2∣+
16

3

4∑

k=2

ak ≪
1

2

2∑

k=1

ak.

(4) and (5) imply that (an) ∈MRBSV S.
This complete the proof. □

3.2. Proof of Theorem 2.2.
First we prove the necessity. Setting x = �

4m , we get

(6)
2m∑

n=m

bn sinnx =
2m∑

n=m

bn sin
n�

4m
≥ sin

�

4

2m∑

n=m

bn.

If b ∈MRBSV S, by (3) with 1
m+1

2m∑
n=m

bn in place of 
m, we have

b2m ≤ b2m + b2m+1 =
∞∑

n=2m

(bn − bn+2) ≤
∞∑

n=2m

∣bn − bn+2∣
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(7) ≤ K (b)
1

m+ 1

2m∑

n=m

bn

and

b2m−1 ≤
∞∑

n=2m−1

(bn − bn+2) ≤
∞∑

n=2m−1

∣bn − bn+2∣ ≤

(8)

∞∑

n=2m

∣bn − bn+2∣ ≤ K (b)
1

m+ 1

2m∑

n=m

bn.

Hence, by (6), (7) and (8), and taking into account that the series (1) converges
uniformly, we obtain that mb2m → 0 and mb2m−1 → 0 as m→∞, and these verify
the necessity of the condition nbn → 0 as n→∞.

Now, we prove the sufficiency. Denote

"n := sup
k≥n

kbk and rn (x) :=

∞∑

k=2n

bk sin kx.

In view of the assumptions, we have that "n → 0 as n→∞. We will show that

(9) ∣rn (x)∣ ≪ "n

also holds. Since rn (k�) = 0, it suffices to prove (9) for 0 < x < �.
First we show that for x ∕= k�

∞∑

k=n

bk sin kx =
1

4 sin x
2 cos x2

{ ∞∑

k=n

(bk − bk+2) (1− cos (k + 1)x)

(10) − (bn + bn+1) (1− cosnx)}+
1

2 cos x2
bn sin

(
n− 1

2

)
x.

An elementary calculation gives

∞∑

k=n

bk cos kx =
1

2

∞∑

k=n

(bk + bk+1) cos kx+
1

2

∞∑

k=n

(bk − bk+1) cos kx,

whence

1

2

∞∑

k=n

bk cos kx =
1

2

∞∑

k=n

(bk + bk+1) cos kx− 1

2

∞∑

k=n+1

bk cos (k − 1)x

=
1

2

∞∑

k=n

(bk + bk+1) cos kx− 1

2
cosx

∞∑

k=n+1

bk cos kx− 1

2
sinx

∞∑

k=n+1

bk sin kx.
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Thus
1

2
(1 + cosx)

∞∑

k=n+1

bk cos kx =
1

2

∞∑

k=n

(bk + bk+1) cos kx

−1

2
sinx

∞∑

k=n+1

bk sin kx− 1

2
bn cosnx

and if x ∕= (2l + 1)�, then
∞∑

k=n+1

bk cos kx

(11) =
1

2 cos x2

{ ∞∑

k=n

(bk + bk+1) cos kx− sinx
∞∑

k=n+1

bk sin kx− bn cosnx

}
.

Further

∞∑

k=n

bk sin kx =
1

2

∞∑

k=n

(bk + bk+1) sin kx+
1

2

∞∑

k=n

(bk − bk+1) sin kx,

whence
1

2

∞∑

k=n

bk sin kx =
1

2

∞∑

k=n

(bk + bk+1) sin kx

−1

2
cosx

∞∑

k=n+1

bk sin kx+
1

2
sinx

∞∑

k=n+1

bk cos kx.

Using (11) we get

1

2

∞∑

k=n

bk sin kx =
1

2

∞∑

k=n

(bk + bk+1) sin kx+
sin x

2

2 cos x2

∞∑

k=n

(bk + bk+1) cos kx

−1

2

∞∑

k=n+1

bk sin kx− sin x
2

2 cos x2
bn cosnx

=
1

2 cos x2

∞∑

k=n

(bk + bk+1) sin

(
k +

1

2

)
x

−1

2

∞∑

k=n+1

bk sin kx− sin x
2

2 cos x2
bn cosnx

and therefore

∞∑

k=n

bk sin kx =
1

2 cos x2

∞∑

k=n

(bk + bk+1) sin

(
k +

1

2

)
x
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+
1

2
bn sinnx− sin x

2

2 cos x2
bn cosnx

=
1

2 cos x2

{ ∞∑

k=n

(bk + bk+1) sin

(
k +

1

2

)
x+ an sin

(
n− 1

2

)
x

}
.

By Abel’s transformation we get

∞∑

k=n

bk sin kx =
1

2 cos x2

{ ∞∑

k=n

(bk − bk+2)
k∑

i=0

sin

(
i+

1

2

)
x

− (bn + bn+1)

n−1∑

i=0

sin

(
i+

1

2

)
x+ bn sin

(
n− 1

2

)
x

}
.

Since for x ∕= 2l� and k = 0, 1, 2, ...

k∑

i=0

sin

(
i+

1

2

)
x =

1− cos (k + 1)x

2 sin x
2

we get (10).
First we show that (9) is valid for 0 < x ≤ �

2 .
Let N = N (x) ≥ 2 be the integer such that

(12)
�

N + 1
< x ≤ �

N
.

Then

rn (x) =

2(n+N)−1∑

k=2n

bk sin kx+

∞∑

k=2(n+N)

bk sin kx = r(1)
n (x) + r(2)

n (x) .

Hence, by (12),

(13)
∣∣∣r(1)
n (x)

∣∣∣ ≤ x
2(n+N)−1∑

k=2n

kbk ≤ 2xN"n ≤ 2�"n.

If (bn) ∈ MRBSV S, then using (10), the inequality 1
�x ≤ sin x

2 (x ∈ (0, �)) and
(12) we obtain

∣∣∣r(2)
n (x)

∣∣∣ ≤ 1

2 sin x
2 cos x2

⎧
⎨
⎩

∞∑

k=2(n+N)

∣bk − bk+2∣+ b2(n+N) + b2(n+N)+1

⎫
⎬
⎭

+
1

2 cos x2
b2(n+N) ≤

1

sin x
2 cos x2

∞∑

k=2(n+N)

∣bk − bk+2∣+
1

2 cos x2
b2(n+N)
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≤ �

x cos �4

∞∑

k=2(n+N)

∣bk − bk+2∣+
1

2 cos �4
b2(n+N)

≪ (N + 1)

⎛
⎝

∞∑

k=2(n+N)

∣bk − bk+2∣+ b2(n+N)

⎞
⎠ .

By (7) we get
∣∣∣r(2)
n (x)

∣∣∣≪ 2K (b)
N + 1

n+N + 1

2(n+N)∑

k=n+N

bk

(14) ≤ 2K (b)
1

n+N + 1

2(n+N)∑

k=n+N

kbk ≤ 2K (b) "n.

Now, we prove (9) for �
2 ≤ x < �.

Let M := M (x) ≥ 2 be the integer such that

(15) � − �

M
≤ x < � − �

M + 1
.

Then

rn (x) =

2(n+M)−1∑

k=2n

bk sin kx+

∞∑

k=2(n+M)

bk sin kx = r(3)
n (x) + r(4)

n (x) .

Using the inequality sinx ≤ � − x (x ∈ (0, �)) and (15) we get

(16)
∣∣∣r(3)
n (x)

∣∣∣ ≤
∣∣∣r(1)
n (x)

∣∣∣ ≤ (� − x)

2(n+M)−1∑

k=2n

kbk ≤ 2 (� − x)M"n ≤ 2�"n.

If (bn) ∈MRBSV S, then using (10), the inequality 1− 1
�x ≤ cos x2 (x ∈ (0, �)) and

(15) we obtain

∣∣∣r(4)
n (x)

∣∣∣ ≤ 1

2 sin x
2 cos x2

⎧
⎨
⎩

∞∑

k=2(n+M)

∣bk − bk+2∣+ b2(n+M) + b2(n+M)+1

⎫
⎬
⎭

+
1

2 cos x2
b2(n+M) ≤

1

sin x
2 cos x2

∞∑

k=2(n+M)

∣bk − bk+2∣+
1

2 cos x2
b2(n+M)

≤ 1(
1− 1

�x
)

sin �
4

∞∑

k=2(n+M)

∣bk − bk+2∣+
1

2
(
1− 1

�x
)b2(n+M)

≪ (M + 1)

⎛
⎝

∞∑

k=2(n+M)

∣bk − bk+2∣+ b2(n+M)

⎞
⎠ .
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Thus, by (7) we get

∣∣∣r(4)
n (x)

∣∣∣≪ 2K (b)
M + 1

n+M + 1

2(n+M)∑

k=n+M

bk

(17) ≤ 2K (b)
1

n+M + 1

2(n+M)∑

k=n+M

kbk ≤ 2K (b) "n.

From the estimations (13), (14), (16) and (17)we obtain the uniform convergence
of series (1) and thus the proof is complete.

3.3. Proof of Theorem 2.3.
The proof of Theorem 2.3 goes analogously as the proof of Theorem 2.2. Now,

we have
2m∑

n=m

bn ≤ K.

Hence, applying (7) and (8) we obtain that mb2m ≤ K and mb2m−1 ≤ K.
In the proof of sufficiency, the only difference is that "n should be replaced by a

positive constant.

3.4. Proof of Theorem 2.4.
If nbn → 0 as n → ∞, by Theorem 2.2, we obtain that series (1) is uniformly

convergent. From this and by the Fejér’s theorem we obtain that the series (1) is
the Fourier series of a continuous function.

Now, we prove the necessity of the condition nbn → 0. If series (1) is the Fourier
series of a continuous function, then the (C, 1)−means

�n (x) =

n∑

k=1

bk

(
1− k

n+ 1

)
sin kx

of this series converges uniformly. In particular

(18) �4m

( �

8m

)
→ 0 as m→∞.

Using the inequality sinx ≥ 2
�x in

[
0, �2

]
we obtain that

(19) �4m (x) =
4m∑

k=1

bk

(
1− k

4m+ 1

)
sin kx ≥

4m∑

k=1

bk

(
1− k

4m+ 1

)
2kx

�

for x ∈
[
0, �

8m

]
. Hence, by (19) and (7),

�4m

( �

8m

)
≥

4m∑

k=1

bk

(
1− k

4m+ 1

)
k

4m
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≥ 1

4m

2m∑

k=m

bk

(
1− k

4m+ 1

)
k ≥ 1

8

2m∑

k=m

bk ≥
1

8K (b)
mb2m

and by (18), nbn → 0 as n→∞. Thus the proof is complete.
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