PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 49 | 1 |
Tytuł artykułu

Voronovskaya-Type Theorems for Derivatives of the Bernstein-Chlodovsky Polynomials and the Szász-Mirakyan Operator

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is devoted to a study of a Voronovskaya-type theorem for the derivative of the Bernstein–Chlodovsky polynomials and to a comparison of its approximation effectiveness with the corresponding theorem for the much better-known Szász–Mirakyan operator. Since the Chlodovsky polynomials contain a factor \(b_n\) tending to infinity having a certain degree of freedom, these polynomials turn out to be generally more efficient in approximating the derivative of the associated function than does the Szász operator. Moreover, whereas Chlodovsky polynomials apply to functions which are even of order \(O(\text{exp}(x^p))\) for any \(p\geq 1\), the Szász–Mirakyan operator does so only for \(p = 1\); it diverges for \(p \gt 1\). The proofs employ but refine practical methods used by Jerzy Albrycht and Jerzy Radecki (in papers which are almost never cited ) as well as by further mathematicians from the great Poznań school.
Rocznik
Tom
49
Numer
1
Opis fizyczny
Daty
wydano
2009
online
2017-12-19
Twórcy
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ojs-doi-10_14708_cm_v49i1_5277
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.