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1. Introduction. There have been a number of generalizations of metric
space. One such generalization is Menger space initiated by Menger [11]. It is
a probabilistic generalization in which we assign to any two points x and y, a
distribution function Fx,y . Schweizer and Sklar [13] studied this concept and gave
some fundamental results on this space

The notion of compatible mapping in a Menger space has been introduced by
Mishra [12]. Using the concept of compatible mappings of type (A), Jain et. al.
[5, 6] proved some interesting fixed point theorems in Menger space. Afterwards,
Jain et. al. [7] proved the fixed point theorem using the concept of weak compatible
maps in Menger space. Cho, Sharma and Sahu [4] introduced the concept of semi-
compatibility in a d-complete topological space. In Menger space, Singh et. al. [15]
defined the concept of semi-compatibility of pair of self-maps.

The notion of non-Archimedean Menger space has been established by Istratescu
and Crivat [10]. The existence of fixed point of mappings on non- Archimedean
Menger space has been given by Istratescu [9]. This has been the extension of the
results of Sehgal and Bharucha - Reid [14] on a Menger space. Cho. et. al. [2]
proved a common fixed point theorem for compatible mappings in non- Archimedean
Menger PM-space.

In this paper, we generalize the result of Cho et. al. [2] by introducing the
notion of semi-compatible self maps. Also, we cited an example in support of this.
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2. Preliminaries. For terminologies, notations and properties of probabilistic
metric spaces, refer to [1], [8] and [14].

Definition 2.1 ([2]) Let X be a non-empty set and D be the set of all left-
continuous distribution functions. An order pair (X,ℱ) is called a non-Archimedean
probabilistic metric space (briefly, a N.A. PM-space) if ℱ is a mapping from X ×X
into D satisfying the following conditions (the distribution function ℱ(x, y) is deno-
ted by Fx,y for all x, y ∈ X):

(PM-1) Fu,v(x) = 1, for all x > 0, if and only if u = v;

(PM-2) Fu,v = Fv,u;

(PM-1) Fu,v(0) = 0;

(PM-4) If Fu,v(x) = 1 and Fv,w(y) = 1

then Fu,w(max{x, y}) = 1, for all u, v, w ∈ X and x, y ≥ 0.

Definition 2.2 ([2]) A t-norm is a function Δ : [0, 1] × [0, 1] → [0, 1] which is
associative, commutative, nondecreasing in each coordinate and Δ(a, 1) = a for
every a ∈ [0, 1].

Definition 2.3 ([2]) A N.A. Menger PM-space is an order triple (X,ℱ,Δ), where
(X,ℱ) is a non-Archimedean PM-space and Δ is a t-norm satisfying the following
condition:

(PM-5) Fu,w(max{x, y}) ≥ Δ(Fu,v(x), Fv,w(y)), for all u, v, w ∈ X and x, y ≥ 0.

Definition 2.4 ([2]) A PM-space (X,ℱ) is said to be of type (C)g if there exists
a g ∈ Ω such that

g(Fx,y(t)) ≤ g(Fx,z(t)) + g(Fz,y(t))

for all x, y, z ∈ X and t ≥ 0, where Ω = {g : g : [0, 1] → [0,∞) is continuous,
strictly decreasing, g(1) = 0 and g(0) <∞}.

Definition 2.5 ([2]) A N.A. Menger PM-space (X,ℱ,Δ) is said to be of type
(D)g if there exists a g ∈ Ω such that

g(Δ(s, t)) ≤ g(s) + g(t)

for all s, t ∈ [0, 1].
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Remark 2.6 ([3]) (1) If a N.A. Menger PM-space (X,ℱ,Δ) is of type (D)g then
(X,ℱ,Δ) is of type (C)g.

(2) If a N.A. Menger PM-space (X,ℱ,Δ) is of type (D)g, then it is metrizable,
where the metric d on X is defined by

(*) d(x, y) =

∫ 1

0

g(Fx,y(t))d(t) for all x, y ∈ X.

Throughout this paper, suppose (X,ℱ,Δ) be a complete N.A. Menger PM-space of
type (D)g with a continuous strictly increasing t-norm Δ. Let � : [0,∞) → [0,∞)
be a function satisfied the condition (Φ) :

(Φ) � is upper-semicontinuous from the right and �(t) < t for all t > 0.

Lemma 2.7 If a function � : [0,∞) → [0,∞) satisfies the condition (Φ), then we
have

(1) For all t ≥ 0, limn→∞ �n(t) = 0, where �n(t) is n-th iteration of �(t).

(2) If {tn} is a non-decreasing sequence of real numbers and tn+1 ≤ �(tn), n =
1, 2, . . . then limn→∞ tn = 0. In particular, if t ≤ �(t) for all t ≥ 0, then
t = 0.

Definition 2.8 ([2]) Let A,S : X → X be mappings. A and S are said to
be compatible if limn→∞ g(FSAxn ,ASxn (t)) = 0 for all t > 0, whenever {xn} is a
sequence in X such that limn→∞Axn = Sxn = z for some z in X.

Definition 2.9 Let A,S : X → X be mappings. A and S are said to be semi-
compatible if limn→∞ g(FASxn,Sz) = 0 for all t > 0, whenever {xn} is a sequence
in X such that limn→∞Axn = Sxn = z for some z in X.

Proposition 2.10 If (S, T ) is a semi-compatible pair of self maps in a N.A. Men-
ger PM-space (X,ℱ,Δ) and T is continuous then (S, T ) is compatible.

Proof Consider a sequence {xn} in X such that {Sxn}→u and {Txn}→u as
n→∞. As T is continuous we get TSxn→Tu as n→∞. By semi-compatibility of
(S, T ), we have limn→∞ g(FSTxn ,Tu(t)) for all t > 0 and so

lim
n→∞ g(FSTxn ,TSxn (t)) ≤ g(FSTxn ,Tu(t)) + g(FTu,TSxn (t))→0

as n→∞. Hence, the pair (S, T ) is compatible. ■

The following is an example of pair of self maps in a N.A. Menger PM-space which
are semi-compatible but not compatible.



18 Semi-compatibility in non-archimedean Menger PM-space

Example 2.11 Let (X,ℱ,Δ) be the N.A. Menger PM-space, where X = [0, 2] and
the metric d on X is defined in condition (*) of Remark 2.6. Define self maps A
and S as follows :

Ax =

{
2− x, if 0 ≤ x < 1

2, if 1 ≤ x ≤ 2
and Sx =

{
x if 0 ≤ x < 1

2 if 1 ≤ x ≤ 2

Take xn = 1 − 1/n. Then Axn→1 as n→∞. Similarly, Sxn→1 as n→∞.
Therefore, limn→∞ g(FASxn,SAxn(t)) ∕= 0 ∀t ≥ 0. Hence, the pair (A,S) is not
compatible.

Also, if limn→∞ xn = 1 = u (say), then limn→∞ g(FASxn,Su(t)) = 0 ∀t ≥ 0.
Hence, the pair (A,S) is semi-compatible.

From the above example it is obvious that the concept of semi-compatibility is more
general than that of compatibility.

Proposition 2.12 Let A and S be compatible self maps of a N.A. Menger PM-
space (X,ℱ,Δ) and let {xn} be a sequence in X such that Axn, Sxn→u for some
u in X. Then ASxn→Su provided S is continuous.

Proof Suppose S is continuous at u. Since Axn, Sxn→u for some u ∈ X,
SSxn→Su as n→∞. Since A and S are compatible maps,

lim
n→∞ g(FASxn,SAxn(t)) = 0, ∀t ≥ 0.

Hence, we have

g(FASxn,Su(t)) ≤ g(FASxn,SAxn(t)) + g(FSAxn,Su(t))→0

for all t > 0, as n→∞, which implies that ASxn→Su as n→∞. ■

Proposition 2.13 Let S and T be compatible self maps of N.A. Menger PM-space
(X,ℱ,Δ) and Su = Tu for some u in X then STu = TSu = SSu = TTu.

Proof Let {xn} be a sequence in X defined as xn = u, n = 1, 2, 3, . . . and Su =
Tu. Then we have Sxn, Txn→Su. Since S and T are compatible and so for t > 0,
we have

g(FSTu,TTu(t)) = lim
n→∞ g(FSTxn,TSxn(t)) = 0.

Hence STu = TTu. Similarly TSu = SSu. But Su = Tu implies that TTu =
TSu. Hence STu = TSu = SSu = TTu. ■

Lemma 2.14 ([2]) Let A,B, S, T : X→X be mappings satisfying the condition (1)
and (2) as follows :

(1) A(X) ⊂ T (X) and B(X) ⊂ S(X).
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(2)

g(FAx,By(t)) ≤ �(max{ g(FSx,Ty(t)), g(FSx,Ax(t)), g(FTy,By(t)),

0.5(g(FSx,By(t)) + g(FTy,Ax(t))) })

for all t > 0, where a function � : [0,+∞)→[0,+∞) satisfies the condition (Φ).
Then the sequence {yn} in X, defined by Ax2n = Tx2n+1 = y2n and Bx2n+1 =
Sx2n+2 = y2n+1 for n = 0, 1, 2, . . . , such that limn→∞ g(Fyn,yn+1

(t)) = 0 for all
t > 0 is a Cauchy sequence in X.

Cho et. al. [2] established the following result :

Theorem 2.15 ([2]) Let A,B, S, T : X→X be mappings satisfying the conditions
(1), (2), (3), (4),

(3) S and T is continuous,

(4) the pairs (A,S) and (B, T ) are compatible maps.

Then A,B, S and T have a unique common fixed point in X.

3. Main Result. In the following, we extend this result to six self maps and
generalize it in other respects too.

Theorem 3.1 Let A,B, S, T, L,M : X→X be mappings satisfying the conditions

(3.1.1) L(X) ⊂ ST (X), M(X) ⊂ AB(X);

(3.1.2) AB = BA, ST = TS, LB = BL, MT = TM ;

(3.1.3) either AB or L is continuous;

(3.1.4) (L,AB) is compatible and (M,ST ) is semi-compatible;

(3.1.5) g(FLx,My(t)) ≤ �(max {g(FABx,STy(t)), g(FABx,Lx(t)), g(FSTy,My(t)),

0.5(g(FABx,My(t)) + g(FSTy,Lx(t))) })

for all t > 0, where a function � : [0,+∞)→[0,+∞) satisfies the condition (Φ).
Then A,B, S, T, L and M have a unique common fixed point in X.

Proof Let x0 ∈ X. From condition (3.1.1) ∃x1, x2 ∈ X such that Lx0 = STx1 =
y0 and Mx1 = ABx2 = y1. Inductively, we can construct sequences {xn} and {yn}
in X such that

(3.1.6) Lx2n = STx2n+1 = y2n and Mx2n+1 = ABx2n+2 = y2n+1
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for n = 0, 1, 2, . . . .
Step 1. We prove that limn→∞ g(Fyn,yn+1

(t)) = 0 for all t > 0. From (3.1.5)
and (3.1.6), we have

g(Fy2n,y2n+1(t)) = g(FLx2n,Mx2n+1(t)

≤ �(max{g(FABx2n,STx2n+1(t)), g(FABx2n,Lx2n(t)),

g(FSTx2n+1,Mx2n+1(t)),

0.5(g(FABx2n,Mx2n+1(t)) + g(FSTx2n+1,Lx2n(t))) })
= �(max{g(Fy2n−1,y2n(t)), g(Fy2n−1,y2n(t)), g(Fy2n,y2n+1(t)),

0.5(g(Fy2n−1,y2n+1(t)) + g(1)) })
≤ �(max{g(Fy2n−1,y2n(t)), g(Fy2n,y2n+1(t)),

0.5(g(Fy2n−1,y2n(t)) + g(Fy2n,y2n+1(t))) })
If g(Fy2n−1,y2n(t)) ≤ g(Fy2n,y2n+1

(t)) for all t > 0, then by (3.1.5)

g(Fy2n,y2n+1
(t)) ≤ �(g(Fy2n,y2n+1

(t)))

on applying Lemma 2.7, we have g(Fy2n,y2n+1(t)) = 0 for all t > 0. Similarly, we
have g(Fy2n+1,y2n+2(t)) = 0 for all t > 0.

Thus, we have g(Fyn,yn+1
(t)) = 0 for all t > 0.

On the other hand, if g(Fy2n−1,y2n(t)) ≥ g(Fy2n,y2n+1
(t)) then by (3.1.5), we have

g(Fy2n,y2n+1
(t)) ≤ �(g(Fy2n−1,y2n(t))) for all t > 0. Similarly, g(Fy2n+1,y2n+2

(t)) ≤
�(g(Fy2n,y2n+1(t))) for all t > 0.

Thus, we have g(Fyn,yn+1(t)) ≤ �(g(Fyn−1,yn(t))) for all t > 0 and n = 1, 2, . . . .
Therefore, by Lemma 2.7, limn→∞ g(Fyn,yn+1

(t)) = 0 for all t > 0, which implies
that {yn} is a Cauchy sequence in X by Lemma 2.14.

Since (X,ℱ,Δ) is complete, the sequence {yn} converges to a point z ∈ X.
Also its subsequences converges as follows :

(3.1.7) {Mx2n+1}→z and {STx2n+1}→z,

(3.1.8) {Lx2n}→z and {ABx2n}→z.
Case I. AB is continuous.

As AB is continuous, (AB)2x2n→ABz and (AB)Lx2n→ABz. As (L,AB) is
compatible, so by Proposition 2.12, L(AB)x2n→ABz.

Step 2. Putting x = ABx2n and y = x2n+1 for t > 0 in (3.1.5), we get

g(FLABx2n,Mx2n+1
(t)) ≤ �(max{g(FABABx2n,STx2n+1

(t)), g(FABABx2n,LABx2n
(t)),

g(FSTx2n+1,Mx2n+1
(t)),

0.5(g(FABABx2n,Mx2n+1
(t)) + g(FSTx2n+1,LABx2n

(t))) }).

Letting n→∞, we get

g(FABz,z(t)) ≤ �(max{g(FABz,z(t))), g(FABz,ABz(t)), g(Fz,z(t)),

0.5(g(FABz,z(t)) + g(Fz,ABz(t))) }) = �(g(FABz,z(t)))
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which implies that g(FABz,z(t)) = 0 by Lemma 2.7 and so we have ABz = z.
Step 3. Putting x = z and y = x2n+1 for t > 0 in (3.1.5), we get

g(FLz,Mx2n+1(t)) ≤ �(max{g(FABz,STx2n+1(t)), g(FABz,Lz(t)),

g(FSTx2n+1,Mx2n+1(t)),

0.5(g(FABz,Mx2n+1(t)) + g(FSTx2n+1,Lz(t))) }).

Letting n→∞, we get

g(FLz,z(t)) ≤ �(max{g(Fz,z(t)), g(Fz,Lz(t)), g(Fz,z(t)),

0.5(g(Fz,z(t)) + g(Fz,Lz(t))) }) = �(g(FLz,z(t)))

which implies that g(FLz,z(t)) = 0 by Lemma 2.7 and so we have Lz = z. Therefore,
ABz = Lz = z.

Step 4. Putting x = Bz and y = x2n+1 for t > 0 in (3.1.5), we get

g(FLBz,Mx2n+1
(t)) ≤ �(max{g(FABBz,STx2n+1

(t)), g(FABBz,LBz(t)),

g(FSTx2n+1,Mx2n+1
(t)),

0.5(g(FABBz,Mx2n+1
(t)) + g(FSTx2n+1,LBz(t))) }).

As BL = LB, AB = BA, so we have L(Bz) = B(Lz) = Bz and AB(Bz) =
B(ABz) = Bz. Letting n→∞, we get

g(FBz,z(t)) ≤ �(max{g(FBz,z(t)), g(FBz,Bz(t)), g(Fz,z(t)),

0.5(g(FBz,z(t)) + g(Fz,Bz(t))) }) = �(g(FBz,z(t)))

which implies that g(FBz,z(t)) = 0 by Lemma 2.7 and so we have Bz = z. Also,
ABz = z and so Az = z. Therefore,

(3.1.9) Az = Bz = Lz = z.

Step 5. As L(X) ⊂ ST (X), there exists v ∈ X such that z = Lz = STv.
Putting x = x2n and y = v for t > 0 in (3.1.5), we get

g(FLx2n,Mv(t)) ≤ �(max{g(FABx2n,STv(t)), g(FABx2n,Lx2n(t)),

g(FSTv,Mv(t)),

0.5(g(FABx2n,Mv(t)) + g(FSTv,Lx2n(t))) }).

Letting n→∞ and using equation (3.1.8), we get

g(Fz,Mv(t)) ≤ �(max{g(Fz,z(t)), g(Fz,z(t)), g(Fz,Mv(t)),

0.5(g(Fz,Mv(t)) + g(Fz,z(t))) }) = �(g(Fz,Mv(t)))
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which implies that g(Fz,Mv(t)) = 0 by Lemma 2.7 and so we have z = Mv. Hence,
STv = z = Mv. As (M,ST ) semi-compatible, we have STMv = MSTv. Thus,
STz = Mz.

Step 6. Putting x = x2n, y = z for t > 0 in (3.1.5), we get

g(FLx2n,Mz(t)) ≤ �(max{g(FABx2n,STz(t)), g(FABx2n,Lx2n
(t)),

g(FSTz,Mz(t)),

0.5(g(FABx2n,Mz(t)) + g(FSTz,Lx2n
(t))) }).

Letting n→∞ and using equation (3.1.8) and Step 5 we get

g(Fz,Mz(t)) ≤ �(max{g(Fz,Mz(t)), g(Fz,z(t)), g(FMz,Mz(t)),

0.5(g(Fz,Mz(t)) + g(Fz,z(t))) }) = �(g(Fz,Mz(t)))

which implies that g(Fz,Mz(t)) = 0 by Lemma 2.7 and so we have z = Mz.
Step 7. Putting x = x2n and y= Tz for t > 0 in (3.1.5), we get

g(FLx2n,MTz(t)) ≤ �(max{g(FABx2n,STTz(t)), g(FABx2n,Lx2n
(t)),

g(FSTTz,MTz(t)),

0.5(g(FABx2n,MTz(t)) + g(FSTTz,Lx2n
(t))) }).

As MT = TM and ST = TS we have MTz = TMz = Tz and ST (Tz) = T (STz) =
Tz. Letting n→∞ we get

g(Fz,Tz(t)) ≤ �(max{g(Fz,Tz(t)), g(Fz,z(t)), g(FTz,Tz(t)),

0.5(g(Fz,Tz(t)) + g(FTz,z(t))) }) = �(g(Fz,Tz(t)))

which implies that g(Fz,Tz(t)) = 0 by Lemma 2.7 and so we have z = Tz.
Now STz = Tz = z implies Sz = z. Hence

(3.1.10) Sz = Tz = Mz = z.

Combining (3.1.9) and (3.1.10), we get Az = Bz = Lz = Mz = Tz = Sz = z.
Hence, the six self maps have a common fixed point in this case.

Case II. L is continuous.
As L is continuous, L2x2n→Lz and L(AB)x2n→Lz.
As (L,AB) is compatible, so by Proposition 2.12, (AB)Lx2n→Lz.

Step 8. Putting x = Lx2n and y = x2n+1 for t > 0 in (3.1.5), we get

g(FLLx2n,Mx2n+1
(t)) ≤ �(max{g(FABLx2n,STx2n+1

(t)), g(FABLx2n,LLx2n
(t)),

g(FSTx2n+1,Mx2n+1
(t)),

0.5(g(FABLx2n,Mx2n+1
(t)) + g(FSTx2n+1,LLx2n

(t))) }).
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Letting n→∞ we get

g(FLz,z(t)) ≤ �(max{g(FLz,z(t)), g(FLz,Lz(t)), g(Fz,z(t)),

0.5(g(FLz,z(t)) + g(Fz,Lz(t))) }) = �(g(FLz,z(t))),

which implies that g(FLz,z(t)) = 0 by Lemma 2.7 and so we have Lz = z. Now,
using steps 5-7 gives us Mz = STz = Sz = Tz = z.

Step 9. As M(X) ⊂ AB(X), there exists w ∈ X such that z = Mz = ABw.
Putting x = w and y = x2n+1 for t > 0 in (3.1.5), we get

g(FLw,Mx2n+1
(t)) ≤ �(max{g(FABw,STx2n+1

(t)), g(FABw,Lw(t)),

g(FSTx2n+1,Mx2n+1
(t)),

0.5(g(FABw,Mx2n+1
(t)) + g(FSTx2n+1,Lw(t))) }).

Letting n→∞, we get

g(FLw,z(t)) ≤ �(max{g(Fz,z(t)), g(Fz,Lw(t)), g(Fz,z(t)),

0.5(g(Fz,z(t)) + g(Fz,Lw(t))) }) = �(g(FLw,z(t))),

which implies that g(FLw,z(t)) = 0 by Lemma 2.7 and so we have Lw = z.
Thus, we have Lw = z = ABw. Since (L,AB) is compatible and so by Propo-

sition 2.13, LABw = ABLw and hence, we have Lz = ABz. Also, Bz = z follows
from Step 4. Thus, Az = Bz = Lz = z and we obtain that z is the common fixed
point of the six maps in this case also.

Step 10. (Uniqueness) Let u be another common fixed point of A,B, S, T, L
and M ; then Au = Bu = Su = Tu = Lu = Mu = u. Putting x = z and y = u for
t > 0 in (3.1.5), we get

g(FLz,Mu(t)) ≤ �(max{g(FABz,STu(t)), g(FABz,Lz(t)),

g(FSTu,Mu(t)),

0.5(g(FABz,Mu(t)) + g(FSTu,Lz(t))) }).

Letting n→∞ we get

g(Fz,u(t)) ≤ �(max{g(Fz,u(t)), g(Fz,z(t)), g(Fu,u(t)),

0.5(g(Fz,u(t)) + g(Fu,z(t))) }) = �(g(Fz,u(t))),

which implies that g(Fz,u(t)) = 0 by Lemma 2.7 and so we have z = u. There-
fore, z is a unique common fixed point of A,B, S, T, L and M . This completes the
proof. ■
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Remark 3.2 If we take B = T = I, the identity map on X in Theorem 3.1, then
the condition (3.1.2) is satisfied trivially and we get

Corollary 3.3 Let A,S, L,M : X→X be mappings satisfying the conditions :

(3.1.11) L(X) ⊂ S(X), M(X) ⊂ A(X);

(3.1.12) Either A or L is continuous;

(3.1.13) (L,A) is compatible and (M,S) is semi-compatible;

(3.1.14) g(FLx,My(t)) ≤ �(max{g(FAx,Sy(t)), g(FAx,Lx(t)), g(FSy,Ly(t)),

0.5(g(FAx,My(t)) + g(FSy,Lx(t))) })
for all t > 0, where a function � : [0,+∞)→[0,+∞) satisfies the condition (Φ).
Then A,S, L and M have a unique common fixed point in X.

Remark 3.4 In view of Remark 3.2, Corollary 3.3 is a generalization of the result
of Cho et. al. [2] in the sense that condition of compatibility of the pairs of self
maps has been restricted to compatible and semi-compatible self maps and only one
of the mappings of the compatible pair is needed to be continuous.
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