Semi-compatibility in non-archimedean Menger PM-space

Abstract. The object of this paper is to establish fixed point theorem for six self maps and an example using the concept of semi-compatible self maps in a non-Archimedean Menger PM-space. Our result generalizes the result of Cho et. al. [2].

2000 Mathematics Subject Classification: Primary 47H10, Secondary 54H25.

Key words and phrases: Non-Archimedean Menger probabilistic metric space, Common fixed points, Compatible maps, Semi-compatible maps.

1. Introduction. There have been a number of generalizations of metric space. One such generalization is Menger space initiated by Menger [11]. It is a probabilistic generalization in which we assign to any two points x and y, a distribution function ${\cal F}_{x,y}$. Schweizer and Sklar [13] studied this concept and gave some fundamental results on this space

The notion of compatible mapping in a Menger space has been introduced by Mishra [12]. Using the concept of compatible mappings of type (A), Jain et. al. [5, 6] proved some interesting fixed point theorems in Menger space. Afterwards, Jain et. al. [7] proved the fixed point theorem using the concept of weak compatible maps in Menger space. Cho, Sharma and Sahu [4] introduced the concept of semicompatibility in a d-complete topological space. In Menger space, Singh et. al. [15] defined the concept of semi-compatibility of pair of self-maps.

The notion of non-Archimedean Menger space has been established by Istratescu and Crivat [10]. The existence of fixed point of mappings on non- Archimedean Menger space has been given by Istratescu [9]. This has been the extension of the results of Sehgal and Bharucha - Reid [14] on a Menger space. Cho. et. al. [2] proved a common fixed point theorem for compatible mappings in non-Archimedean Menger PM-space.

In this paper, we generalize the result of Cho et. al. [2] by introducing the notion of semi-compatible self maps. Also, we cited an example in support of this.

2. Preliminaries. For terminologies, notations and properties of probabilistic metric spaces, refer to [1], [8] and [14].

DEFINITION 2.1 ([2]) Let X be a non-empty set and \mathcal{D} be the set of all left-continuous distribution functions. An order pair (X, \mathcal{F}) is called a non-Archimedean probabilistic metric space (briefly, a N.A. PM-space) if \mathcal{F} is a mapping from $X \times X$ into \mathcal{D} satisfying the following conditions (the distribution function $\mathcal{F}(x, y)$ is denoted by $F_{x,y}$ for all $x, y \in X$):

(PM-1)
$$F_{u,v}(x) = 1$$
, for all $x > 0$, if and only if $u = v$;

$$(PM-2) F_{u,v} = F_{v,u};$$

(PM-1)
$$F_{u,v}(0) = 0;$$

(PM-4) If
$$F_{u,v}(x)=1$$
 and $F_{v,w}(y)=1$ then $F_{u,w}(\max\{x,y\})=1$, for all $u,v,w\in X$ and $x,y\geq 0$.

DEFINITION 2.2 ([2]) A t-norm is a function $\Delta:[0,1]\times[0,1]\to[0,1]$ which is associative, commutative, nondecreasing in each coordinate and $\Delta(a,1)=a$ for every $a\in[0,1]$.

DEFINITION 2.3 ([2]) A N.A. Menger PM-space is an order triple (X, \mathcal{F}, Δ) , where (X, \mathcal{F}) is a non-Archimedean PM-space and Δ is a t-norm satisfying the following condition:

(PM-5)
$$F_{u,w}(max\{x,y\}) \ge \Delta(F_{u,v}(x), F_{v,w}(y))$$
, for all $u, v, w \in X$ and $x, y \ge 0$.

DEFINITION 2.4 ([2]) A PM-space (X, \mathcal{F}) is said to be of type $(C)_g$ if there exists a $g \in \Omega$ such that

$$g(F_{x,y}(t)) \le g(F_{x,z}(t)) + g(F_{z,y}(t))$$

for all $x,y,z\in X$ and $t\geq 0$, where $\Omega=\{g:g:[0,1]\rightarrow [0,\infty)$ is continuous, strictly decreasing, g(1)=0 and $g(0)<\infty\}$.

DEFINITION 2.5 ([2]) A N.A. Menger PM-space (X, \mathcal{F}, Δ) is said to be of type $(D)_g$ if there exists a $g \in \Omega$ such that

$$g(\Delta(s,t)) \le g(s) + g(t)$$

for all $s, t \in [0, 1]$.

REMARK 2.6 ([3]) (1) If a N.A. Menger PM-space (X, \mathcal{F}, Δ) is of type $(D)_g$ then (X, \mathcal{F}, Δ) is of type $(C)_g$.

(2) If a N.A. Menger PM-space (X, \mathcal{F}, Δ) is of type $(D)_g$, then it is metrizable, where the metric d on X is defined by

(*)
$$d(x,y) = \int_0^1 g(F_{x,y}(t))d(t) \text{ for all } x, y \in X.$$

Throughout this paper, suppose (X, \mathcal{F}, Δ) be a complete N.A. Menger PM-space of type $(D)_g$ with a continuous strictly increasing t-norm Δ . Let $\phi : [0, \infty) \to [0, \infty)$ be a function satisfied the condition (Φ) :

 (Φ) ϕ is upper-semicontinuous from the right and $\phi(t) < t$ for all t > 0.

LEMMA 2.7 If a function $\phi:[0,\infty)\to[0,\infty)$ satisfies the condition (Φ) , then we have

- (1) For all $t \ge 0$, $\lim_{n\to\infty} \phi^n(t) = 0$, where $\phi^n(t)$ is n-th iteration of $\phi(t)$.
- (2) If $\{t_n\}$ is a non-decreasing sequence of real numbers and $t_{n+1} \leq \phi(t_n)$, $n = 1, 2, \ldots$ then $\lim_{n \to \infty} t_n = 0$. In particular, if $t \leq \phi(t)$ for all $t \geq 0$, then t = 0.

DEFINITION 2.8 ([2]) Let $A, S: X \to X$ be mappings. A and S are said to be compatible if $\lim_{n\to\infty} g(F_{SA_{x_n},AS_{x_n}}(t)) = 0$ for all t>0, whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} Ax_n = Sx_n = z$ for some z in X.

DEFINITION 2.9 Let $A, S: X \to X$ be mappings. A and S are said to be semi-compatible if $\lim_{n\to\infty} g(F_{ASx_n,Sz}) = 0$ for all t>0, whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} Ax_n = Sx_n = z$ for some z in X.

PROPOSITION 2.10 If (S,T) is a semi-compatible pair of self maps in a N.A. Menger PM-space (X, \mathcal{F}, Δ) and T is continuous then (S,T) is compatible.

PROOF Consider a sequence $\{x_n\}$ in X such that $\{Sx_n\}\to u$ and $\{Tx_n\}\to u$ as $n\to\infty$. As T is continuous we get $TSx_n\to Tu$ as $n\to\infty$. By semi-compatibility of (S,T), we have $\lim_{n\to\infty} g(F_{ST_{x_n},Tu}(t))$ for all t>0 and so

$$\lim_{n \to \infty} g(F_{ST_{x_n}, TS_{x_n}}(t)) \le g(F_{ST_{x_n}, Tu}(t)) + g(F_{Tu, TS_{x_n}}(t)) \to 0$$

as $n \to \infty$. Hence, the pair (S, T) is compatible.

The following is an example of pair of self maps in a N.A. Menger PM-space which are semi-compatible but not compatible.

EXAMPLE 2.11 Let (X, \mathcal{F}, Δ) be the N.A. Menger PM-space, where X = [0, 2] and the metric d on X is defined in condition (*) of Remark 2.6. Define self maps A and S as follows:

$$Ax = \begin{cases} 2 - x, & \text{if } 0 \le x < 1\\ 2, & \text{if } 1 \le x \le 2 \end{cases} \text{ and } Sx = \begin{cases} x & \text{if } 0 \le x < 1\\ 2 & \text{if } 1 \le x \le 2 \end{cases}$$

Take $x_n = 1 - 1/n$. Then $Ax_n \to 1$ as $n \to \infty$. Similarly, $Sx_n \to 1$ as $n \to \infty$. Therefore, $\lim_{n \to \infty} g(F_{ASx_n, SAx_n}(t)) \neq 0 \ \forall t \geq 0$. Hence, the pair (A, S) is not compatible.

Also, if $\lim_{n\to\infty} x_n = 1 = u$ (say), then $\lim_{n\to\infty} g(F_{ASx_n,Su}(t)) = 0 \ \forall t \geq 0$. Hence, the pair (A,S) is semi-compatible.

From the above example it is obvious that the concept of semi-compatibility is more general than that of compatibility.

PROPOSITION 2.12 Let A and S be compatible self maps of a N.A. Menger PM-space (X, \mathcal{F}, Δ) and let $\{x_n\}$ be a sequence in X such that Ax_n , $Sx_n \rightarrow u$ for some u in X. Then $ASx_n \rightarrow Su$ provided S is continuous.

PROOF Suppose S is continuous at u. Since Ax_n , $Sx_n \to u$ for some $u \in X$, $SSx_n \to Su$ as $n \to \infty$. Since A and S are compatible maps,

$$\lim_{n \to \infty} g(F_{ASx_n, SAx_n}(t)) = 0, \quad \forall t \ge 0.$$

Hence, we have

$$g(F_{ASx_n,Su}(t)) \leq g(F_{ASx_n,SAx_n}(t)) + g(F_{SAx_n,Su}(t)) \rightarrow 0$$

for all t > 0, as $n \to \infty$, which implies that $ASx_n \to Su$ as $n \to \infty$.

PROPOSITION 2.13 Let S and T be compatible self maps of N.A. Menger PM-space (X, \mathcal{F}, Δ) and Su = Tu for some u in X then STu = TSu = SSu = TTu.

PROOF Let $\{x_n\}$ be a sequence in X defined as $x_n = u$, n = 1, 2, 3, ... and Su = Tu. Then we have $Sx_n, Tx_n \rightarrow Su$. Since S and T are compatible and so for t > 0, we have

$$g(F_{STu,TTu}(t)) = \lim_{n \to \infty} g(F_{STx_n,TSx_n}(t)) = 0.$$

Hence STu = TTu. Similarly TSu = SSu. But Su = Tu implies that TTu = TSu. Hence STu = TSu = SSu = TTu.

LEMMA 2.14 ([2]) Let $A, B, S, T : X \rightarrow X$ be mappings satisfying the condition (1) and (2) as follows:

(1)
$$A(X) \subset T(X)$$
 and $B(X) \subset S(X)$.

(2)

$$g(F_{Ax,By}(t)) \leq \phi(\max\{ g(F_{Sx,Ty}(t)), g(F_{Sx,Ax}(t)), g(F_{Ty,By}(t)), 0.5(g(F_{Sx,By}(t)) + g(F_{Ty,Ax}(t))) \})$$

for all t > 0, where a function $\phi : [0, +\infty) \rightarrow [0, +\infty)$ satisfies the condition (Φ) . Then the sequence $\{y_n\}$ in X, defined by $Ax_{2n} = Tx_{2n+1} = y_{2n}$ and $Bx_{2n+1} = Sx_{2n+2} = y_{2n+1}$ for $n = 0, 1, 2, \ldots$, such that $\lim_{n \to \infty} g(F_{y_n, y_{n+1}}(t)) = 0$ for all t > 0 is a Cauchy sequence in X.

Cho et. al. [2] established the following result:

THEOREM 2.15 ([2]) Let $A, B, S, T : X \rightarrow X$ be mappings satisfying the conditions (1), (2), (3), (4),

- (3) S and T is continuous,
- (4) the pairs (A, S) and (B, T) are compatible maps.

Then A, B, S and T have a unique common fixed point in X.

3. Main Result. In the following, we extend this result to six self maps and generalize it in other respects too.

Theorem 3.1 Let $A, B, S, T, L, M : X \rightarrow X$ be mappings satisfying the conditions

$$(3.1.1) L(X) \subset ST(X), \quad M(X) \subset AB(X);$$

(3.1.2)
$$AB = BA, ST = TS, LB = BL, MT = TM;$$

$$(3.1.3)$$
 either AB or L is continuous;

(3.1.4) (L, AB) is compatible and (M, ST) is semi-compatible;

$$(3.1.5) g(F_{Lx,My}(t)) \le \phi(\max\{g(F_{ABx,STy}(t)), g(F_{ABx,Lx}(t)), g(F_{STy,My}(t)), 0.5(g(F_{ABx,My}(t)) + g(F_{STy,Lx}(t)))\})$$

for all t > 0, where a function $\phi : [0, +\infty) \to [0, +\infty)$ satisfies the condition (Φ) . Then A, B, S, T, L and M have a unique common fixed point in X.

PROOF Let $x_0 \in X$. From condition (3.1.1) $\exists x_1, x_2 \in X$ such that $Lx_0 = STx_1 = y_0$ and $Mx_1 = ABx_2 = y_1$. Inductively, we can construct sequences $\{x_n\}$ and $\{y_n\}$ in X such that

(3.1.6)
$$Lx_{2n} = STx_{2n+1} = y_{2n} \text{ and } Mx_{2n+1} = ABx_{2n+2} = y_{2n+1}$$

for n = 0, 1, 2, ...

Step 1. We prove that $\lim_{n\to\infty} g(F_{y_n,y_{n+1}}(t)) = 0$ for all t>0. From (3.1.5) and (3.1.6), we have

$$\begin{split} g(F_{y_{2n},y_{2n+1}}(t)) &=& g(F_{Lx_{2n},Mx_{2n+1}}(t) \\ &\leq & \phi(\max\{g(F_{ABx_{2n},STx_{2n+1}}(t)),g(F_{ABx_{2n},Lx_{2n}}(t)), \\ && g(F_{STx_{2n+1},Mx_{2n+1}}(t)), \\ && 0.5(g(F_{ABx_{2n},Mx_{2n+1}}(t))+g(F_{STx_{2n+1},Lx_{2n}}(t))) \; \}) \\ &=& \phi(\max\{g(F_{y_{2n-1},y_{2n}}(t)),g(F_{y_{2n-1},y_{2n}}(t)),g(F_{y_{2n},y_{2n+1}}(t)), \\ && 0.5(g(F_{y_{2n-1},y_{2n+1}}(t))+g(1)) \; \}) \\ &\leq & \phi(\max\{g(F_{y_{2n-1},y_{2n}}(t)),g(F_{y_{2n},y_{2n+1}}(t)), \\ && 0.5(g(F_{y_{2n-1},y_{2n}}(t))+g(F_{y_{2n},y_{2n+1}}(t))) \; \}) \end{split}$$

If
$$g(F_{y_{2n-1},y_{2n}}(t)) \le g(F_{y_{2n},y_{2n+1}}(t))$$
 for all $t > 0$, then by (3.1.5)
$$g(F_{y_{2n},y_{2n+1}}(t)) \le \phi(g(F_{y_{2n},y_{2n+1}}(t)))$$

on applying Lemma 2.7, we have $g(F_{y_{2n},y_{2n+1}}(t))=0$ for all t>0. Similarly, we have $g(F_{y_{2n+1},y_{2n+2}}(t))=0$ for all t>0.

Thus, we have $g(F_{y_n,y_{n+1}}(t)) = 0$ for all t > 0.

On the other hand, if $g(F_{y_{2n-1},y_{2n}}(t)) \geq g(F_{y_{2n},y_{2n+1}}(t))$ then by (3.1.5), we have $g(F_{y_{2n},y_{2n+1}}(t)) \leq \phi(g(F_{y_{2n-1},y_{2n}}(t)))$ for all t > 0. Similarly, $g(F_{y_{2n+1},y_{2n+2}}(t)) \leq \phi(g(F_{y_{2n},y_{2n+1}}(t)))$ for all t > 0.

Thus, we have $g(F_{y_n,y_{n+1}}(t)) \leq \phi(g(F_{y_{n-1},y_n}(t)))$ for all t > 0 and $n = 1, 2, \ldots$ Therefore, by Lemma 2.7, $\lim_{n \to \infty} g(F_{y_n,y_{n+1}}(t)) = 0$ for all t > 0, which implies that $\{y_n\}$ is a Cauchy sequence in X by Lemma 2.14.

Since (X, \mathcal{F}, Δ) is complete, the sequence $\{y_n\}$ converges to a point $z \in X$. Also its subsequences converges as follows:

$$(3.1.7) \{Mx_{2n+1}\} \rightarrow z \text{ and } \{STx_{2n+1}\} \rightarrow z,$$

$$(3.1.8) \{Lx_{2n}\} \rightarrow z \text{ and } \{ABx_{2n}\} \rightarrow z.$$

Case I. AB is continuous.

As AB is continuous, $(AB)^2x_{2n} \rightarrow ABz$ and $(AB)Lx_{2n} \rightarrow ABz$. As (L,AB) is compatible, so by Proposition 2.12, $L(AB)x_{2n} \rightarrow ABz$.

Step 2. Putting $x = ABx_{2n}$ and $y = x_{2n+1}$ for t > 0 in (3.1.5), we get

$$\begin{array}{ll} g(F_{LABx_{2n},Mx_{2n+1}}(t)) & \leq & \phi(\max\{g(F_{ABABx_{2n},STx_{2n+1}}(t)),g(F_{ABABx_{2n},LABx_{2n}}(t)),\\ & & g(F_{STx_{2n+1},Mx_{2n+1}}(t)),\\ & & 0.5(g(F_{ABABx_{2n},Mx_{2n+1}}(t))+g(F_{STx_{2n+1},LABx_{2n}}(t))) \ \}). \end{array}$$

Letting $n \to \infty$, we get

$$g(F_{ABz,z}(t)) \leq \phi(\max\{g(F_{ABz,z}(t))), g(F_{ABz,ABz}(t)), g(F_{z,z}(t)), \\ 0.5(g(F_{ABz,z}(t)) + g(F_{z,ABz}(t)))\}) = \phi(g(F_{ABz,z}(t)))$$

which implies that $g(F_{ABz,z}(t)) = 0$ by Lemma 2.7 and so we have ABz = z. Step 3. Putting x = z and $y = x_{2n+1}$ for t > 0 in (3.1.5), we get

$$g(F_{Lz,Mx_{2n+1}}(t)) \leq \phi(\max\{g(F_{ABz,STx_{2n+1}}(t)),g(F_{ABz,Lz}(t)), g(F_{STx_{2n+1},Mx_{2n+1}}(t)), g(F_{ABz,Lz}(t)), g(F_{ABz,Lz}(t$$

Letting $n \to \infty$, we get

$$g(F_{Lz,z}(t)) \leq \phi(\max\{g(F_{z,z}(t)), g(F_{z,Lz}(t)), g(F_{z,z}(t)), 0.5(g(F_{z,z}(t)) + g(F_{z,Lz}(t)))\}) = \phi(g(F_{Lz,z}(t)))$$

which implies that $g(F_{Lz,z}(t)) = 0$ by Lemma 2.7 and so we have Lz = z. Therefore, ABz = Lz = z.

Step 4. Putting x = Bz and $y = x_{2n+1}$ for t > 0 in (3.1.5), we get

$$\begin{array}{lcl} g(F_{LBz,Mx_{2n+1}}(t)) & \leq & \phi(\max\{g(F_{ABBz,STx_{2n+1}}(t)),g(F_{ABBz,LBz}(t)),\\ & & g(F_{STx_{2n+1},Mx_{2n+1}}(t)),\\ & & 0.5(g(F_{ABBz,Mx_{2n+1}}(t))+g(F_{STx_{2n+1},LBz}(t))) \ \}). \end{array}$$

As BL = LB, AB = BA, so we have L(Bz) = B(Lz) = Bz and AB(Bz) = B(ABz) = Bz. Letting $n \to \infty$, we get

$$g(F_{Bz,z}(t)) \leq \phi(\max\{g(F_{Bz,z}(t)), g(F_{Bz,Bz}(t)), g(F_{z,z}(t)), 0.5(g(F_{Bz,z}(t)) + g(F_{z,Bz}(t)))\}) = \phi(g(F_{Bz,z}(t)))$$

which implies that $g(F_{Bz,z}(t)) = 0$ by Lemma 2.7 and so we have Bz = z. Also, ABz = z and so Az = z. Therefore,

$$(3.1.9) Az = Bz = Lz = z.$$

Step 5. As $L(X) \subset ST(X)$, there exists $v \in X$ such that z = Lz = STv. Putting $x = x_{2n}$ and y = v for t > 0 in (3.1.5), we get

$$\begin{split} g(F_{Lx_{2n},Mv}(t)) & \leq & \phi(\max\{g(F_{ABx_{2n},STv}(t)),g(F_{ABx_{2n},Lx_{2n}}(t)),\\ & g(F_{STv,Mv}(t)),\\ & 0.5(g(F_{ABx_{2n},Mv}(t))+g(F_{STv,Lx_{2n}}(t))) \;\}). \end{split}$$

Letting $n \to \infty$ and using equation (3.1.8), we get

$$g(F_{z,Mv}(t)) \leq \phi(\max\{g(F_{z,z}(t)), g(F_{z,z}(t)), g(F_{z,Mv}(t)), 0.5(g(F_{z,Mv}(t)) + g(F_{z,z}(t)))\}) = \phi(g(F_{z,Mv}(t)))$$

which implies that $g(F_{z,Mv}(t)) = 0$ by Lemma 2.7 and so we have z = Mv. Hence, STv = z = Mv. As (M,ST) semi-compatible, we have STMv = MSTv. Thus, STz = Mz.

Step 6. Putting $x = x_{2n}$, y = z for t > 0 in (3.1.5), we get

$$\begin{array}{lcl} g(F_{Lx_{2n},Mz}(t)) & \leq & \phi(\max\{g(F_{ABx_{2n},STz}(t)),g(F_{ABx_{2n},Lx_{2n}}(t)),\\ & & g(F_{STz,Mz}(t)),\\ & & 0.5(g(F_{ABx_{2n},Mz}(t))+g(F_{STz,Lx_{2n}}(t))) \ \}). \end{array}$$

Letting $n \to \infty$ and using equation (3.1.8) and Step 5 we get

$$g(F_{z,Mz}(t)) \leq \phi(\max\{g(F_{z,Mz}(t)), g(F_{z,z}(t)), g(F_{Mz,Mz}(t)), 0.5(g(F_{z,Mz}(t)) + g(F_{z,z}(t)))\}) = \phi(g(F_{z,Mz}(t)))$$

which implies that $g(F_{z,Mz}(t)) = 0$ by Lemma 2.7 and so we have z = Mz.

Step 7. Putting $x = x_{2n}$ and y = Tz for t > 0 in (3.1.5), we get

$$\begin{split} g(F_{Lx_{2n},MTz}(t)) & \leq & \phi(\max\{g(F_{ABx_{2n},STTz}(t)),g(F_{ABx_{2n},Lx_{2n}}(t)),\\ & g(F_{STTz,MTz}(t)),\\ & 0.5(g(F_{ABx_{2n},MTz}(t))+g(F_{STTz,Lx_{2n}}(t))) \;\}). \end{split}$$

As MT = TM and ST = TS we have MTz = TMz = Tz and ST(Tz) = T(STz) = Tz. Letting $n \to \infty$ we get

$$g(F_{z,Tz}(t)) \leq \phi(\max\{g(F_{z,Tz}(t)), g(F_{z,z}(t)), g(F_{Tz,Tz}(t)), 0.5(g(F_{z,Tz}(t)) + g(F_{Tz,z}(t)))\}) = \phi(g(F_{z,Tz}(t)))$$

which implies that $g(F_{z,Tz}(t)) = 0$ by Lemma 2.7 and so we have z = Tz. Now STz = Tz = z implies Sz = z. Hence

$$(3.1.10) Sz = Tz = Mz = z.$$

Combining (3.1.9) and (3.1.10), we get Az = Bz = Lz = Mz = Tz = Sz = z. Hence, the six self maps have a common fixed point in this case.

Case II. L is continuous.

As L is continuous, $L^2x_{2n} \rightarrow Lz$ and $L(AB)x_{2n} \rightarrow Lz$.

As (L, AB) is compatible, so by Proposition 2.12, $(AB)Lx_{2n} \rightarrow Lz$.

Step 8. Putting
$$x = Lx_{2n}$$
 and $y = x_{2n+1}$ for $t > 0$ in (3.1.5), we get

$$\begin{array}{lcl} g(F_{LLx_{2n},Mx_{2n+1}}(t)) & \leq & \phi(\max\{g(F_{ABLx_{2n},STx_{2n+1}}(t)),g(F_{ABLx_{2n},LLx_{2n}}(t)),\\ & & g(F_{STx_{2n+1},Mx_{2n+1}}(t)),\\ & & 0.5(g(F_{ABLx_{2n},Mx_{2n+1}}(t))+g(F_{STx_{2n+1},LLx_{2n}}(t))) \ \}). \end{array}$$

Letting $n \to \infty$ we get

$$g(F_{Lz,z}(t)) \leq \phi(\max\{g(F_{Lz,z}(t)), g(F_{Lz,Lz}(t)), g(F_{z,z}(t)), 0.5(g(F_{Lz,z}(t)) + g(F_{z,Lz}(t)))\}) = \phi(g(F_{Lz,z}(t))),$$

which implies that $g(F_{Lz,z}(t)) = 0$ by Lemma 2.7 and so we have Lz = z. Now, using steps 5-7 gives us Mz = STz = Sz = Tz = z.

Step 9. As $M(X) \subset AB(X)$, there exists $w \in X$ such that z = Mz = ABw. Putting x = w and $y = x_{2n+1}$ for t > 0 in (3.1.5), we get

$$\begin{array}{ll} g(F_{Lw,Mx_{2n+1}}(t)) & \leq & \phi(\max\{g(F_{ABw,STx_{2n+1}}(t)),g(F_{ABw,Lw}(t)),\\ & & g(F_{STx_{2n+1},Mx_{2n+1}}(t)),\\ & & 0.5(g(F_{ABw,Mx_{2n+1}}(t))+g(F_{STx_{2n+1},Lw}(t))) \ \}). \end{array}$$

Letting $n \to \infty$, we get

$$\begin{array}{lcl} g(F_{Lw,z}(t)) & \leq & \phi(\max\{g(F_{z,z}(t)),g(F_{z,Lw}(t)),g(F_{z,z}(t)),\\ & & 0.5(g(F_{z,z}(t))+g(F_{z,Lw}(t))) \ \}) = \phi(g(F_{Lw,z}(t))), \end{array}$$

which implies that $g(F_{Lw,z}(t)) = 0$ by Lemma 2.7 and so we have Lw = z.

Thus, we have Lw = z = ABw. Since (L, AB) is compatible and so by Proposition 2.13, LABw = ABLw and hence, we have Lz = ABz. Also, Bz = z follows from Step 4. Thus, Az = Bz = Lz = z and we obtain that z is the common fixed point of the six maps in this case also.

Step 10. (Uniqueness) Let u be another common fixed point of A, B, S, T, L and M; then Au = Bu = Su = Tu = Lu = Mu = u. Putting x = z and y = u for t > 0 in (3.1.5), we get

$$g(F_{Lz,Mu}(t)) \leq \phi(\max\{g(F_{ABz,STu}(t)), g(F_{ABz,Lz}(t)), g(F_{STu,Mu}(t)), g(F_{STu,Lz}(t)), g(F_{ABz,Mu}(t)) + g(F_{STu,Lz}(t))) \}).$$

Letting $n \to \infty$ we get

$$g(F_{z,u}(t)) \leq \phi(\max\{g(F_{z,u}(t)), g(F_{z,z}(t)), g(F_{u,u}(t)), 0.5(g(F_{z,u}(t)) + g(F_{u,z}(t)))\}) = \phi(g(F_{z,u}(t))),$$

which implies that $g(F_{z,u}(t)) = 0$ by Lemma 2.7 and so we have z = u. Therefore, z is a unique common fixed point of A, B, S, T, L and M. This completes the proof.

REMARK 3.2 If we take B = T = I, the identity map on X in Theorem 3.1, then the condition (3.1.2) is satisfied trivially and we get

COROLLARY 3.3 Let $A, S, L, M : X \rightarrow X$ be mappings satisfying the conditions:

$$(3.1.11) L(X) \subset S(X), \ M(X) \subset A(X);$$

$$(3.1.12) Either A or L is continuous;$$

$$(3.1.13)$$
 (L,A) is compatible and (M,S) is semi-compatible;

(3.1.14)
$$g(F_{Lx,My}(t)) \le \phi(\max\{g(F_{Ax,Sy}(t)), g(F_{Ax,Lx}(t)), g(F_{Sy,Ly}(t)), 0.5(g(F_{Ax,My}(t)) + g(F_{Sy,Lx}(t)))\})$$

for all t > 0, where a function $\phi : [0, +\infty) \rightarrow [0, +\infty)$ satisfies the condition (Φ) . Then A, S, L and M have a unique common fixed point in X.

REMARK 3.4 In view of Remark 3.2, Corollary 3.3 is a generalization of the result of Cho et. al. [2] in the sense that condition of compatibility of the pairs of self maps has been restricted to compatible and semi-compatible self maps and only one of the mappings of the compatible pair is needed to be continuous.

REFERENCES

- [1] S.S. Chang, Fixed point theorems for single-valued and multi-valued mappings in non-Archimedean Menger probabilistic metric spaces, Math. Japonica 35(5) (1990), 875–885.
- [2] Y.J. Cho, K.S. Ha and S.S. Chang, Common fixed point theorems for compatible mappings of type (A) in non-Archimedean Menger PM-spaces, Math. Japonica 48(1) (1997), 169–179.
- [3] Y.J. Cho, K.S. Park and S.S. Chang, Fixed point theorems in metric spaces and probabilistic metric spaces, Internat. J. Math. & Math. Sci. 19(2) (1996), 243–252.
- [4] Y.J. Cho, B.K. Sharma and R.D. Sahu, Semi-compatibility and fixed points, Math. Japon. 42 (1) (1995), 91–98.
- [5] A. Jain and B. Singh, Common fixed point theorem in Menger space through compatible maps of type (A), Chh. J. Sci. Tech. 2 (2005), 1–12.
- [6] A. Jain and B. Singh, A fixed point theorem in Menger space through compatible maps of type (A), V.J.M.S. 5(2) (2005), 555-568.
- [7] A. Jain and B. Singh, Common fixed point theorem in Menger Spaces, The Aligarh Bull. of Math. 25(1) (2006), 23–31.
- [8] O. Hadzic, A note on Istratrescu's fixed point theorems in non-Archimedean Menger spaces,
 Bull. Math. Soc. Sci. Math. Rep. Soc. Roum. T. 24(72),3 (1980), 277–280.

- [9] Istratrescu, V.I., Fixed point theorems for some classes of contraction mappings on nonarchimedean probabilistic metric space, Publ. Math. (Debrecen) 25 (1978), 29-34.
- [10] V.I. Istratrescu and N. Crivat, On some classes of nonarchimedean Menger spaces, Seminar de spatii Metrice probabiliste, Univ. Timisoara Nr. 12 (1974).
- [11] K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. USA. 28 (1942), 535-537.
- [12] S.N. Mishra, Common fixed points of compatible mappings in PM-spaces, Math. Japon. 36(2) (1991), 283–289.
- [13] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 313–334.
- [14] V.M. Sehgal and A.T. Bharucha-Reid, Fixed points of contraction maps on probabilistic metric spaces, Math. System Theory 6 (1972), 97–102.
- [15] B. Singh and S. Jain, Semi-compatibility and fixed point theorem in Menger space using implicit relation, East Asian Math. J. 21(1) (2005), 65–76.

Bijendra Singh

SCHOOL OF STUDIES IN MATHEMATICS, VIKRAM UNIVERSITY

UJJAIN (M.P.) - 456010

Arihant Jain

SCHOOL OF STUDIES IN MATHEMATICS, VIKRAM UNIVERSITY

Ujjain (M.P.) - 456010

E-mail: arihant2412@gmail.com

Pallavi Agarwal

SCHOOL OF STUDIES IN MATHEMATICS, VIKRAM UNIVERSITY

Ujjain (M.P.) - 456010

 $E ext{-}mail:$ agarwalrahul@bharatpetroleum.in

(Received: 25.06.2008)