Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 47 | 2 |

Tytuł artykułu

Sur la méthode de l’intégrale particulière et sur ses conséquences pour l’équation de Riccati et pour les équations différentielles linéaires et homogènes d’ordre supérieur

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This paper presents the method of particular solution for solving the Riccati equation and linear homogenous equations of second and third order, as well as its certain application to linear homogenous equations of n-th order. The conditions of effective integrability for equations (0.1) and (0.2) are expressed in symbolic (operator) form and also for equation (0.3) in fully expanded form. There have been proved three theorems which state the following: for any subclass of differential equations of the form (0.1), (0.2), (0.3), if there are known, respectively: a particular solution \(y_0\), a particular solution u 0 , two linearly independent particular solutions \(u_1 , u_2\), then it is possible to construct superclasses of differential equations of the given class, using classes cited in [6, 7, 8, 9]. Moreover, one may obtain their effectively integrable generalizations. Numerous examples provided illustrate the above results. The article presents also a practical way of applying the method of particular solution to linear equations of n-th order. This method enables us to integrate more general equations than those described in [4, 5, 14] of the form (0.1), (0.2), (0.3), (0.4) for which the particular solutions are cited therein.

Rocznik

Tom

47

Numer

2

Opis fizyczny

Daty

wydano
2007
online
2017-12-19

Twórcy

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.ojs-doi-10_14708_cm_v47i2_5254
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.