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1. Introduction. In recent years, problems with impulses have been studied
by a number of authors, for example [1-5]. This work was motivated by [1],[3],
where impulsive functional differential equations of first order and second order
were considered. In this paper we discuss the integro-differential equations of first
order with impulses at fixed moments. By the method of upper and lower solutions
we obtain existence result in a sector, then using the monotone iterative scheme we
prove the existence of extremal solutions. Finally, we investigate the existence and
the uniqueness of the global solutions for impulsive integro-differential equations of
first order. Our consideration is based on fixed point theorem.

2. Preliminaries. In this section we introduce notations and definitions which
are used throughout this paper.

Let J =[0,T], 0 =ty < t1 < ... < tp < tpp1 =T, J = J\{ts,..tp},
Ji = [tkfl,tk],k‘ =1,...,p+ 1.

We define the following class of functions:

PC(J,R)={u:J — R:ue€ C(J,R), there exist u(t]) and u(t;) = u(ty),
k=12, ..p}.
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PCY(J,R) = {u € POLE) : w1 € C* (o1 ) R) £ = 1, 1,
there exist u/(07),u/(T7), /() .k =1,2,...,p}.

Let us consider the functional differential problem of the form

(1) u'(t) = f(& [Tul(t),u(t), teint Jo, k=1,...,p+1,
(2) Au(ty) = Ii(u(ty)), k=1,....p,
(3) u(0) = uo,

where 7 : PC(J,R) — PC(J,R) is a Voltera operator, f : J x R xR — R,
Au(ty) = u(ty) —u(ty), Iy : R — R for each k = 1,...,p. We assume that 7 is
continuous, monotone nondecreasing and for any bounded set E C PC(J,R),7E is
bounded.

By a solution of (1)-(3) we mean a function u € PC(J,R) satisfying (1)-(3).

DEFINITION 2.1 A function a € PC(J,R) is said to be a lower solution of problem
(1)-(3) if
t,[Tal(t),at), teint Jy, k=1,..,p+1,
A()SI(()%k:Lmn

and an upper solution of (1)-(3) if the above inequalities are reversed.

If a,8 € PC(J,R) satisfy a(t) < 3(t),t € J, then we write o < 3 and define the
sector
[a, 8] ={v e PC(J,R): a <wv < S}

We introduce the following assumptions:

(H1) f:J xR xR — R is continuous at each point (t,z,y) € J' x R x R. We
assume that for all z,y € R there exist the limits

lim f(t,2,y) = f(tr,z,9y)

t—t,
fork=1,...,p+1; and
hm flt,z,y)

t*)t

fork=0,...,p
(H2) Ij : R — R are continuous and nondecreasing for each k = 1,...,p

(H3) There exist a, 3 € PCY(J,R) such that a(t) < B(t),t € J, where a, 3 are
lower and upper solution of (1)-(3) respectively.

(H4) f(t,u,v) is nondecreasing in u for each (¢,v) such that ¢t € J, a(t) < v < B(1).

Note that problems (1)-(3) are equivalent to the integral equations.
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LEMMA 2.2 If f € C(J' x R x R,/R), then u € PC(J,R) is a solution of (1)-(3) if
and only if u € PCY(J,R) is a solution of following equation

(4) u(t) = uo Jr/o f(s, [Tu](s),u(s))ds + Z I (u(ty)), te J

0<tp<t

THEOREM 2.3 Let the assumptions (H1)-(H4) hold. Then the problem (1)-(3) has
a solution u € [a, f].

PrOOF Let v € R, t € J. Denote
p(v) = max[a(t), min(v, 5(t))],

—v + B(t)

T2 0 V2 A0
Y(w) =4 0, t a(t) <v < B(t)
%, v < aft).

If u: J — R, then by p(u) we denote the function p(u) : J 3t — p(u(t)) € R,
Consider the initial problem

(5) u'(t) = F(t, [Tul(t), u(t), t€[0,t],
(6) u(0) = uo,
where

F(t, [Tu](t),u(t)) = £ [Tpw)](t), p(u(®))) + y(u(t)).

From the definition of p(u) and the monotone character of 7 we have

a(t) < p(u)(t) < B(t), t € [0,4],

(7) [Tal(t) < [Tp(w)](t) < [TA](1),t € [0, 1]

F is bounded and continuous on [0,#;] x ¥ x Q = {(t,v,u) ER3:te[0,t],
[Tal(t) <v<[TH(t),a(t) <u<pB(t)}, i.e. there exists M > 0 such that for any
(t,v,u) € [0,t1]xExQ we have |F(t,v,u)| < M. If wereplacein (4) f(s, [Tul(s), u(s))
by F(s,[Tu](s),u(s)) and t € [0,t1] then (4) is equivalent to (5)-(6). Next we define
an operator S : C ([0,#1],R) — C ([0,#1],R) . For any v € C ([0, 1], R), let

(Su)(t) = uo —l—/o F(s,[Tu](s),u(s))ds, t €[0,t1].

The operator S is continuous. Let

B=<cueC([0,t1],R): sup |u(®)] < |ug|+ Mty p.
te[0,t1]
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Then B is convex, closed and bounded. For v € B,t € [0,t1], we get

[(Su)(t)] = |uo —l—/o F(s,[Tul(s),u(s))ds| < |ug| + Mt.

Then
sup |(Su)(t)] < |ug| + Mt;.
t€[0,t1]
So SB C B. By an application of Schauder’s fixed point theorem, the initial problem
(5)-(6) has a solution u; on [0, #1].
We shall now prove that a(t) < uy(t) < B(¢
[

< B(),t
0,

u1~(t), t € [0,¢1]. If the inequality a(t) < uy(t),t €
at € (0,t1] such that

€ [0,t1]. Put m(t) = alt) —
] is not true, then there exists

1) = t)=¢>0.
m® = g m =

We consider two following cases:
Case I. Suppose t € (0,%1). In consequence

m/(t) = 0.

Since a(t) > uy (%), then p(u;(t)) = a(t) and

(8) 0=m/(f) = o/ () —uy(f) < f(E, [Te] (), a(f)
S

S T )]D, s (D) = Ty

Moreover, in view of (7) and (H4),
F@[Ta](t), a(®) = f(E [Tp(ur)](?), a(f)) < 0.
From this and (8) we obtain the contradiction

0=m/(t) <

1+ u3(?)

Case II. Suppose that t = t; i.e., m(t;) = a(t;) — uy(t1) = €. Since m(t) < ¢ for
t € [0,t1), then there exists a sequence 7, € [0,t1),7, < 7,41 such that lim 7, = ¢
V— 00

v h) — v
and D,m(T,,) = 1)11Lm(1)13f m(T + })L m(T )
Let Ny be such positive integer that for v > Ny we have a(r,) — ui(7,) > 0.

Then it follows that

> 0.

(9) 0< D_m(T,,) < O/(TV) - 'U'/1(TV> < f(TVv [Ta](TV)7a(TV))

=, [Tp(n)) (7). s () = ey

Since a(1,) > u1(7,), then p(u1(7,)) = a(r,). Moreover, in view of (7) and (H4),

fr, [Tal(m), () = f(7, [Tp(un)](1), a(7)) < 0.
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From this and (9) we obtain the contradiction

0<m(n) < <o

= 1+ u2(7)

Similarly, we can prove ut) < 3(t), t € [0,t4].
Since a(t1) < wy(t1) < B(t1) and I; is nondecreasing, we get

Li(a(t)) < Li(ui(t)) < Li(B(t))-

From this, by the definition of lower and upper solution, we have

a(tf) < a(ty) + h(alt) < wui(t) + L(ui(t)) < B(t) + L(B(8)) < B(E).

Then
a(tf) <wui(t) + L(ui(t)) < B(E).

Repeating the same arguments, we can show that the problem
u'(t) = F(t, [Tul(t), u(t)), t € (t1,t2],
u(tf) = ul(tl) + Il(ul(tl)),

where u(s) = wui(s),s € [0,t1], has a solution ug such that a(t) < us(t) < B(t),
t e (ty,ta).
So forth and so on, for ¢ € (¢, t,41], we consider the initial problem

u'(t) = F(t, [Tul(t),u(t)), t € (tp, tptl,
U(t;) = up(ty) + Ip(”p(tp))-

Similarly, we can prove that this problem has a solution u,4+1 such that a(t) <
Upt1(t) < B(t), t € (tp,tpt1]. Continuing the proof, let

ul(t), te [O7t1];
ua(t),  te(ti,ta);

upr1(t), t€ (tp,tpya]

Then u is a solution of problem (1)-(3) and «a(t) < u(t) < B(t), t € J.

Next we consider the impulsive equation

(10) u'(t) = f(t, [Tul(t),u(t), teint Jy, k=1,...,p+1,
(11) Au(ty) = I (u(ty)), k=1,...,p,

subject to the periodic boundary condition

(12) w(0) = u(T).
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DEFINITION 2.4 A function o € PC(J,R) is said to be a lower solution of problem

(10)-(12) if

' (t) < f(t, [Tal(t),a(t), teint Jy, k=1,..,p+1,
Aa(ty) < Ii(a(te)), k=1, p,
a(0) < o(T)

and an upper solution of (10)-(12) if the above inequalities are reversed.

By applying Definition 2.4 and Theorem 2.3 we have the following result:

THEOREM 2.5 Let the assumptions (H1),(H2) and (H4) hold. Assume there exist
a, € PCY(J,R) such that o, 3 are lower and upper solutions of (10)-(12) respec-
tiwely, a(t) < B(t),t € J and a(0) = B(0). Then problem (10)-(12) has a solution
we o).

PROOF Let u(-; (0)) € [e, 3] denotes the solution of the following problem
u'(t) = [t [Tul(t),ut), teint Jp, k=1,..p+1,
tk) = Ik(u(tk))a k= 1,..p,

The existence of a solution to the above problem follows from Theorem 2.3.
Hence, by the definition of the lower and upper solution we have

Since «(0) = 5(0), then

Thus
u(T;a(0)) = a(0).

We prove that v = u (-; @(0)) is a solution of (10)-(12). m

3. Monotone iterative method. In thissection we establish existence criteria
for extremal solutions of the problem (1)-(3) by the method of lower and upper
solutions and the monotone method. Now we introduce simple result, which plays
an important role in monotone iterative technique.

LEMMA 3.1 Let u € PC*(J,R),m € PC(J,R) such that

u'(t) <m(tu(t), teJ,
Aulty) <0, k=1,..p,
u(0) < 0.

Then u(t) < 0,t € J.
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PrOOF We first note that if u € PC*(J,R),m,o € PC(J,R),d; € R,
k=1,...,p verify

(13) Au(tk) = dk, k= 1, ey P

then u can be expressed as

t
(14) u(t) = ugeM® +/ eMO=M) 5 (5)ds 4 Z (eM(t)_M(t’””)) dg,
0 {k:0<t, <t}

where M(t) = fotm(r)dr. Apply (13) and (14) with o(t) < 0,t € Jyup < 0 and
dr <0, k=1,...,p we obtain our result. n

THEOREM 3.2 Let the assumptions (H1)-(H4) hold and there exists M > 0 such
that the function f satisfy the following condition

(15) flt,u,v) — f(t,u,v9) > —M(v1 — v2),

forte J[Tal(t) <u<[THH),B(t) > v >wve > aft).

Then there exist monotone sequences {an}o21,{Bn}>2,, such that lim ay,(t) =

p(t), lim B,(t) = r(t) monotonically and piecewise uniformly on J, where p and r
n—oo

are the minimal and mazimal solutions of (1)-(3), respectively.
PROOF Let us consider the following problem

u'(t) = F(t,u(t)),t € J',
(16) Au(ty) = I (E(tk)), k=1,...,p,
u(0) = uo,

where
F(t,u(t)) = f(¢,[TE](1),&(t) — M(u(t) — £(1))
for any t € J, € € [o, 3]

This problem has for every ¢ € [a, 3] a unique solution u € PC!(J,R). Then we can
define the operator B : [a, 3] — PC(J,R) by

(17) [BEJ(t) = u(t), t€J,

where u is the unique solution of (16).
The mapping B defined by (17) satisfies

(i) a < Baand 8> BfS on J.

(ii) For &1,& € [, B],&1 < & on J implies B¢, < B& on J (i.e., B is a monotone
operator on the segment [« 3].)
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To prove (i) let us set Ba = «; and Bf = (1, where ay,3; are the unique
solutions of the problem (16) corresponding to £ = « and £ = (3, respectively. We
first prove that a(t) < ai(t),t € J. Indeed, if we consider v(t) = a(t) — ai(t),t € J,
then

v'(t) = o/ (t) — i (t)
< (& [Tal(t),a(t) — F(&[Tal(#), a() + M(ar (1) — a(t))
= —Mov(t), telJ,
Av(ty) = Da(ty) — Dan(te) < Ie(alty)) — Ie(a(tr)) =0, k=1,..,p,
v(0) = a(0) — a1(0) < ug — up = 0.
Thus, Lemma 3.1 implies that v = & — a3 < 0 on J. Analogously one can show that
B> (1 on J.
Now, to prove (ii), let us set B¢, = y; and B, = ya, where &1,& € [, 8], < &

on J and yj, y2 are the unique solutions of the problem (16) with £ = & and £ = &,
respectively. Let v(t) = y1(t) — y2(t),t € J. Using (15),(H4) and (H2) we have

IN
=
82l
[\
~+
I
782%
iy
—~
~+
~—
I
s
<
[
—_
~+
~—
Iy
—
=
N
~—
+
=
/\
Nt
Iy
[\
—
~—
~—

(
= =M (y1(t) — y2(t))
= —Mv(t), telJ,
Av(ty) = Ay (tr) — Aya(tr) = Ix(&1(tr)) — T (&(tr)) < 0,k =1,...,p,
v(0) = 91(0) — y2(0) = 0.

Lemma 3.1 implies that v =y; —y2 <0 on J.
The mapping B defined by (17) generates monotone sequences {ay, }, {8, }, where

a1 = A,
apy1 = Ba,, n>1
and
ﬂl = ﬁv
ﬂn+1 = BﬁTN n> 1.
In fact, we have
at) < ar(t) < .. S an(t) < Bn(t) < ... < Bi(t) < B(t), teld

Note that the problem (16) is equivalent to the integral equation (4) if we replace
in (4), f(s,[Tu](s),u(s)) by F(s,u(s)). The sequences {ay,},{0,}, are uniformly
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bounded and completely continuous, therefore the sequences are uniformly conver-
gent in (t,txs1],k = 0,...,p. There exist p,r € PC1(J,R) such that {«,} /" p and
{Bn} \\ r and p,r € [a, §]. Employing the integral representation of the solution
of (16) we conclude that p and r are solutions of the problem (1)-(3). It is easy to
prove by an induction argument following an argument similar to that employed to
prove (ii) that

an(t) < y(t) < Bu(t).t € Jn € N,

where y € [o, 4] is any solution of (1)-(3). Taking the limit as n — co we get
p(t) <yt) <r(t),teJ,

what means that p, r are respectively minimal and maximal solutions of the (1)-(3).m

4. Global solutions. Let J =[0,00), 0 <t <tg < .. <t, <.. limt,=

n—oo
+00. Consider the functional-differential problem

(18) () = f(t, [Tz](t), z(t), t>0,t#ts,ta,. tp, ..
(19) Ax(ty) = In(z(te)), k=12,
(20) z(0) = xo,

where f,7,I:(k =1,2,...) are the same as in (1)-(3).
We require the following assumptions on function f and operator 7.
(A1) Function f € C(J x R x R,R) and there exist a,b € C(J,R") such that
[f (82, w) = f(ty,2) < a(t)|z —y[+b(t)|w — =]
for any z,y,w,z € Rt € J.
(A2) There exists ¢ € C(J,R*") such that

[72)(t) = [Tyl < e(t) max [x(s) = y(s)l, ¢ € e, te]

for any x,y € PC(J,R) such that x = y in [0, t5—1],k =1,2,...

Now we enunciate result parallel to Theorem 2.2 in [3]. There are some differences
but the idea and technique of proof are the same.

THEOREM 4.1 Suppose that (A1),(A2) hold. Then equation (18)-(20) has a unique
solution x € PC(J,R).

PRrOOF Let x € C ([0,t1],R) . Consider the following norm in C ([0,#],R) :

| z ||l«= max {e_Mlt max |x(s)|},

te[0,t4] s€[0,t]
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where M; = N + K, K >0, Ny = H[IOELX} {a(t)c(t) +b(t)}.
tel0,t,

Consider the operator Ay : C ([0,t1],R) — C ([0,t1],R) defined by
t
(a) () =0 + [ 1 (s, [Tal(s),a()) ds.
0
Then for 2,y € C ([0,t1],R) and ¢t € [0,t1], we have that

[(Az) () = (Aiy) (t)lé/O S (s, [T)(s), 2(5)) = f (s, [Tyl(s), y(s))] ds

< / (a(s)|[T2](s) — [Tw](s)] + b(s)la(s) — y(s)[] ds
< [ faoete) mas tn(r) = oo+ bGs) s o)~ | s
= / (a(s)c(s)er(s))ez\/flsefz\/[lS max |z(7) — y(7)|ds
0 T€(0,s]
< [ (aloete) 46 mae {0 max [ofr) — y(r)l  ds
T — 1 ||« tascs s)) eMisds
< | y||/0<<><>+b<>> d
T — . eMisds
< Nile—yl / d
Ny 1t
= @ - ey
< Mot py,

M
Thus

N1 Nl
A — (A < Xiz—yl, Mis < 2L Myt g0l
Srg[%fg}l( 12) (8) = (A1y) ()] < M, [ z—yl Inax e < e |z —y s

N-
—Mat A —(4 < Liz—yl.
e slg[%ﬁ]l( 12) (s) = (A () < g e =y s,

N,
— Mt A — (A < — — v ||«
tg[lgffl]{e Srg[gfg}l( 1) (s) — (Ar1y) (S)I} < 2=yl

ie.,
Ny
Az — Ay ||+ < — -yl -
| Arz — Avy || < lz—yll
Thus A; is a contractive operator and by Banach fixed point theorem, A; has a

unique fixed point z7 € C ([0,t1],R).
For z € C ([t1,t2],R) let

|z |l«= max {e_MQ(t_tl) max |x(s)|},
tE[t1,ta] SE[t1,t]
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where My = Ny + K, K >0, No = max | {a(t)c(t) +b(t)}.

tE(ts,ta

Consider the operator Ay : C ([t1, 2], R) — C ([t1,t2],R) defined by

(Asx) (t) = 27 (t1) + (27 (t1)) + t f(s,[Tx](s),2(s)) ds,

where x(7) = 25(7), T € [0,t1].
Then for z,y € C ([t1,t2],R) and t € [ty, t2], we have

| (Ag) (2)

Thus

SE[t1,t]

ie.,

IN

IN

IA

IN

IN

IN

(A2y) (1] S/t | (s, [Txl(s), x(s)) = [ (5, [Tyl(s),y(s))| ds

[ T als) = [T)0)] + o els) — u(s) s
[ |eorets) ma o) =9t +bGs) . [o() =yt s

[ (as)els) + b)) XN [a(r) — y(r)lds

t1 TE[tl,S]

/t (a(s)c(s) + b(s)) M=) max {e_M2(5_t1) max |z(7) — y(7)|} ds

4 s€[t1,t] TE[t1,5]

|z —y |« / (a(s)e(s) + b(s)) eM2ls—t) g

t1

t
Nyllz—y . / M=) g
ty
N-
iz (@ 1) e =y .
&eMg(tftl

) _
i le=yl.

2

N. N.
max | (422) (5) = (42y) ()] < T2 |2 =y [l max eMao—to) < Z2Ma=t) | oy,
2

sE€[t1,t] M,

N-
e Ma(t=1) max | (Azz) () — (Azy) ()] < 2 ||z —y |-,
s€[t1,t] My
max {eM2<“1> max | (Asz) (s) — (Azy) <s>|} <2y
telts ta] s€[t1,1] - My

Na
Asx — A < —lxz—vyl.
| Az~ Aoy < 32 oy

Thus A, is a contractive operator and by Banach fixed point theorem, As has a
unique fixed point =5 € C ([t1,t2],R).
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So forth and so on, for x € C ([tn, tnt1],R), let

| 2 |«= max {eM"“(tt") max |z(s)|},
tE[tn trnt1] 5€[tn,t]

where My 41 = Npp1 + K, K >0, Ny = [max ]{a(t)c(t) +b(t)}
t€[tn tnta
and

¢
(Awer2) () = 23 (t0) + T ()) + [ 7 s, [Tl(5),2(s) ds,
tn
where z(7) = z3(7),7 € (0,t1],...,x(7) = 25 (7), 7 € (tn—1,tn].
Similarly, we can prove that A, has a unique fixed point z},,; € C ([tn,tns1],R).
The function
zi(t), te[0,t4]

1(0),
1‘3(t), te (tlatQ]

x:L(t)7 te (tmtn-‘rl]

is the unique solution of the problem (18)-(20). ™

Example.

Consider the equation

2'(t) =t — x(t) cost + t2 f(f e ta(r)dr, t>0,t#1,2,..,k, ..
1
(21) Ax(k) = ix(k)7 k=1,2,..;

z(0) = 0.
It is easy to verify that the function f(t, x,w) = t—x cost+t?w, wheret > 0, z,w € R

satisfies Assumption (A1) and the Voltera operator [T z](t) = f(f e” tx(T)dr satisfies
assumption (A2). Hence, by Theorem 4.1, (21) has a unique global solutions.
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