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1. Introduction. In recent years, problems with impulses have been studied
by a number of authors, for example [1-5]. This work was motivated by [1],[3],
where impulsive functional differential equations of first order and second order
were considered. In this paper we discuss the integro-differential equations of first
order with impulses at fixed moments. By the method of upper and lower solutions
we obtain existence result in a sector, then using the monotone iterative scheme we
prove the existence of extremal solutions. Finally, we investigate the existence and
the uniqueness of the global solutions for impulsive integro-differential equations of
first order. Our consideration is based on fixed point theorem.

2. Preliminaries. In this section we introduce notations and definitions which
are used throughout this paper.

Let J = [0, T ], 0 = t0 < t1 < ... < tp < tp+1 = T, J ′ = J \ {t1, ...tp},
Jk = [tk−1, tk], k = 1, ..., p+ 1.

We define the following class of functions:

PC(J,R) = {u : J → R : u ∈ C(J ′,R), there exist u(t+k ) and u(t−k ) = u(tk),
k = 1, 2, ..., p}.
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PC1(J,R) = {u ∈ PC(J,R) : u|(tk−1,tk) ∈ C1 ((tk−1, tk),R) , k = 1, ..., p+ 1,

there exist u′(0+), u′(T−), u′(t+k ) , k = 1, 2, ..., p}.

Let us consider the functional differential problem of the form

u′(t) = f(t, [T u](t), u(t)), t ∈ int Jk, k = 1, ..., p+ 1,(1)
∆u(tk) = Ik(u(tk)), k = 1, ..., p,(2)
u(0) = u0,(3)

where T : PC(J,R) → PC(J,R) is a Voltera operator, f : J × R × R → R,
∆u(tk) = u(t+k ) − u(tk), Ik : R → R for each k = 1, ..., p. We assume that T is
continuous, monotone nondecreasing and for any bounded set E ⊂ PC(J,R), T E is
bounded.

By a solution of (1)-(3) we mean a function u ∈ PC1(J,R) satisfying (1)-(3).

Definition 2.1 A function α ∈ PC1(J,R) is said to be a lower solution of problem
(1)-(3) if

α′(t) ≤ f(t, [T α](t), α(t)), t ∈ int Jk, k = 1, ..., p+ 1,
∆α(tk) ≤ Ik(α(tk)), k = 1, ..., p,
α(0) ≤ u0,

and an upper solution of (1)-(3) if the above inequalities are reversed.

If α, β ∈ PC(J,R) satisfy α(t) ≤ β(t), t ∈ J, then we write α ≤ β and define the
sector

[α, β] = {v ∈ PC(J,R) : α ≤ v ≤ β}.
We introduce the following assumptions:

(H1) f : J × R × R → R is continuous at each point (t, x, y) ∈ J ′ × R × R. We
assume that for all x, y ∈ R there exist the limits

lim
t→t−k

f(t, x, y) = f(tk, x, y)

for k = 1, ..., p+ 1; and
lim
t→t+k

f(t, x, y)

for k = 0, ..., p.

(H2) Ik : R→ R are continuous and nondecreasing for each k = 1, ..., p.

(H3) There exist α, β ∈ PC1(J,R) such that α(t) ≤ β(t), t ∈ J, where α, β are
lower and upper solution of (1)-(3) respectively.

(H4) f(t, u, v) is nondecreasing in u for each (t, v) such that t ∈ J, α(t) ≤ v ≤ β(t).

Note that problems (1)-(3) are equivalent to the integral equations.



L. Skóra 209

Lemma 2.2 If f ∈ C(J ′ × R × R,R), then u ∈ PC(J,R) is a solution of (1)-(3) if
and only if u ∈ PC1(J,R) is a solution of following equation

(4) u(t) = u0 +
∫ t

0

f(s, [T u](s), u(s))ds+
∑

0<tk<t

Ik(u(tk)), t ∈ J.

Theorem 2.3 Let the assumptions (H1)-(H4) hold. Then the problem (1)-(3) has
a solution u ∈ [α, β].

Proof Let v ∈ R, t ∈ J. Denote

p(v) = max[α(t),min(v, β(t))],

γ(v) =





−v + β(t)
1 + v2

, v ≥ β(t)

0, α(t) ≤ v ≤ β(t)
α(t)− v
1 + v2

, v ≤ α(t).

If u : J → R, then by p(u) we denote the function p(u) : J 3 t→ p(u(t)) ∈ R,
Consider the initial problem

u′(t) = F (t, [T u](t), u(t)), t ∈ [0, t1],(5)
u(0) = u0,(6)

where
F (t, [T u](t), u(t)) = f(t, [T p(u)](t), p(u(t))) + γ(u(t)).

From the definition of p(u) and the monotone character of T we have

α(t) ≤ p(u)(t) ≤ β(t), t ∈ [0, t1],

(7) [T α](t) ≤ [T p(u)](t) ≤ [T β](t), t ∈ [0, t1].

F is bounded and continuous on [0, t1] × Σ × Ω =
{

(t, v, u) ∈ R3 : t ∈ [0, t1],
[T α](t) ≤ v ≤ [T β](t), α(t) ≤ u ≤ β(t)} , i.,e. there exists M > 0 such that for any
(t, v, u) ∈ [0, t1]×Σ×Ω we have |F (t, v, u)| < M. If we replace in (4) f(s, [T u](s), u(s))
by F (s, [T u](s), u(s)) and t ∈ [0, t1] then (4) is equivalent to (5)-(6). Next we define
an operator S : C ([0, t1],R)→ C ([0, t1],R) . For any u ∈ C ([0, t1],R) , let

(Su)(t) = u0 +
∫ t

0

F (s, [T u](s), u(s))ds, t ∈ [0, t1].

The operator S is continuous. Let

B =

{
u ∈ C ([0, t1],R) : sup

t∈[0,t1]

|u(t)| ≤ |u0|+Mt1

}
.
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Then B is convex, closed and bounded. For u ∈ B, t ∈ [0, t1], we get

|(Su)(t)| =
∣∣∣∣u0 +

∫ t

0

F (s, [T u](s), u(s))ds
∣∣∣∣ ≤ |u0|+Mt.

Then
sup

t∈[0,t1]

|(Su)(t)| ≤ |u0|+Mt1.

So SB ⊆ B. By an application of Schauder’s fixed point theorem, the initial problem
(5)-(6) has a solution u1 on [0, t1].

We shall now prove that α(t) ≤ u1(t) ≤ β(t), t ∈ [0, t1]. Put m(t) = α(t) −
u1(t), t ∈ [0, t1]. If the inequality α(t) ≤ u1(t), t ∈ [0, t1] is not true, then there exists
a t̃ ∈ (0, t1] such that

m(t̃) = max
t∈[0,t1]

m(t) = ε > 0.

We consider two following cases:
Case I. Suppose t̃ ∈ (0, t1). In consequence

m′(t̃) = 0.

Since α(t̃) > u1(t̃), then p(u1(t̃)) = α(t̃) and

0 = m′(t̃) = α′(t̃)− u′1(t̃) ≤ f(t̃, [T α](t̃), α(t̃))(8)

−f(t̃, [T p(u1)](t̃), p(u1(t̃)))− ε

1 + u2
1(t̃)

.

Moreover, in view of (7) and (H4),

f(t̃, [T α](t̃), α(t̃))− f(t̃, [T p(u1)](t̃), α(t̃)) ≤ 0.

From this and (8) we obtain the contradiction

0 = m′(t̃) ≤ − ε

1 + u2
1(t̃)

< 0.

Case II. Suppose that t̃ = t1 i.e., m(t1) = α(t1)− u1(t1) = ε. Since m(t) < ε for
t ∈ [0, t1), then there exists a sequence τν ∈ [0, t1), τν < τν+1 such that lim

ν→∞
τν = t1

and D−m(τν) = lim inf
h→0−

m(τν + h)−m(τν)
h

≥ 0.

Let N0 be such positive integer that for ν ≥ N0 we have α(τν) − u1(τν) > 0.
Then it follows that

0 ≤ D−m(τν) ≤ α′(τν)− u′1(τν) ≤ f(τν , [T α](τν), α(τν))(9)

−f(τν , [T p(u1)](τν), p(u1(τν)))− ε

1 + u2
1(τν)

.

Since α(τν) > u1(τν), then p(u1(τν)) = α(τν). Moreover, in view of (7) and (H4),

f(τν , [T α](τν), α(τν))− f(τν , [T p(u1)](τν), α(τν)) ≤ 0.
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From this and (9) we obtain the contradiction

0 ≤ m′(τν) ≤ − ε

1 + u2
1(τν)

< 0.

Similarly, we can prove u1t) ≤ β(t), t ∈ [0, t1].
Since α(t1) ≤ u1(t1) ≤ β(t1) and I1 is nondecreasing, we get

I1(α(t1)) ≤ I1(u1(t1)) ≤ I1(β(t1)).

From this, by the definition of lower and upper solution, we have

α(t+1 ) ≤ α(t1) + I1(α(t1) ≤ u1(t1) + I1(u1(t1)) ≤ β(t1) + I1(β(t1)) ≤ β(t+1 ).

Then
α(t+1 ) ≤ u1(t1) + I1(u1(t1)) ≤ β(t+1 ).

Repeating the same arguments, we can show that the problem

u′(t) = F (t, [T u](t), u(t)), t ∈ (t1, t2],

u(t+1 ) = u1(t1) + I1(u1(t1)),

where u(s) = u1(s), s ∈ [0, t1], has a solution u2 such that α(t) ≤ u2(t) ≤ β(t),
t ∈ (t1, t2].

So forth and so on, for t ∈ (tp, tp+1], we consider the initial problem

u′(t) = F (t, [T u](t), u(t)), t ∈ (tp, tp+1],

u(t+p ) = up(tp) + Ip(up(tp)).

Similarly, we can prove that this problem has a solution up+1 such that α(t) ≤
up+1(t) ≤ β(t), t ∈ (tp, tp+1]. Continuing the proof, let

u(t) =





u1(t), t ∈ [0, t1];
u2(t), t ∈ (t1, t2];
. . . , . . .
up+1(t), t ∈ (tp, tp+1].

Then u is a solution of problem (1)-(3) and α(t) ≤ u(t) ≤ β(t), t ∈ J.

Next we consider the impulsive equation

u′(t) = f(t, [T u](t), u(t)), t ∈ int Jk, k = 1, ..., p+ 1,(10)
∆u(tk) = Ik(u(tk)), k = 1, ..., p,(11)

subject to the periodic boundary condition

(12) u(0) = u(T ).
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Definition 2.4 A function α ∈ PC1(J,R) is said to be a lower solution of problem
(10)-(12) if

α′(t) ≤ f(t, [T α](t), α(t)), t ∈ int Jk, k = 1, ..., p+ 1,
∆α(tk) ≤ Ik(α(tk)), k = 1, ..., p,
α(0) ≤ α(T )

and an upper solution of (10)-(12) if the above inequalities are reversed.

By applying Definition 2.4 and Theorem 2.3 we have the following result:

Theorem 2.5 Let the assumptions (H1),(H2) and (H4) hold. Assume there exist
α, β ∈ PC1(J,R) such that α, β are lower and upper solutions of (10)-(12) respec-
tively, α(t) ≤ β(t), t ∈ J and α(0) = β(0). Then problem (10)-(12) has a solution
u ∈ [α, β].

Proof Let u(·;α(0)) ∈ [α, β] denotes the solution of the following problem

u′(t) = f(t, [T u](t), u(t)), t ∈ int Jk, k = 1, ..., p+ 1,
∆u(tk) = Ik(u(tk)), k = 1, ..., p,
u(0) = α(0).

The existence of a solution to the above problem follows from Theorem 2.3.
Hence, by the definition of the lower and upper solution we have

α(0) ≤ α(T ) ≤ u(T ;α(0)),
β(0) ≥ β(T ) ≥ u(T ;α(0)).

Since α(0) = β(0), then

α(0) ≤ u(T ;α(0)) ≤ β(T ) ≤ β(0) = α(0).

Thus
u (T ;α(0)) = α(0).

We prove that u = u (·;α(0)) is a solution of (10)-(12). �

3. Monotone iterative method. In this section we establish existence criteria
for extremal solutions of the problem (1)-(3) by the method of lower and upper
solutions and the monotone method. Now we introduce simple result, which plays
an important role in monotone iterative technique.

Lemma 3.1 Let u ∈ PC1(J,R),m ∈ PC(J,R) such that

u′(t) ≤ m(t)u(t), t ∈ J ′,
4u(tk) ≤ 0, k = 1, ..., p,
u(0) ≤ 0.

Then u(t) ≤ 0, t ∈ J.
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Proof We first note that if u ∈ PC1(J,R),m, σ ∈ PC(J,R), dk ∈ R,
k = 1, ..., p verify

u′(t) = m(t)u(t) + σ(t), t ∈ J ′,
4u(tk) = dk, k = 1, ..., p(13)
u(0) = u0,

then u can be expressed as

(14) u(t) = u0e
M(t) +

∫ t

0

eM(t)−M(s)σ(s)ds+
∑

{k:0<tk<t}

(
eM(t)−M(tk)

)
dk,

where M(t) =
∫ t

0
m(r)dr. Apply (13) and (14) with σ(t) ≤ 0, t ∈ J, u0 ≤ 0 and

dk ≤ 0, k = 1, ..., p we obtain our result. �

Theorem 3.2 Let the assumptions (H1)-(H4) hold and there exists M ≥ 0 such
that the function f satisfy the following condition

(15) f(t, u, v1)− f(t, u, v2) ≥ −M(v1 − v2),

for t ∈ J, [T α](t) ≤ u ≤ [T β](t), β(t) ≥ v1 ≥ v2 ≥ α(t).
Then there exist monotone sequences {αn}∞n=1, {βn}∞n=1, such that lim

n→∞
αn(t) =

ρ(t), lim
n→∞

βn(t) = r(t) monotonically and piecewise uniformly on J , where ρ and r

are the minimal and maximal solutions of (1)-(3), respectively.

Proof Let us consider the following problem

u′(t) = F (t, u(t)), t ∈ J ′,
∆u(tk) = Ik(ξ(tk)), k = 1, ..., p,(16)
u(0) = u0,

where
F (t, u(t)) = f(t, [T ξ](t), ξ(t))−M(u(t)− ξ(t))

for any t ∈ J, ξ ∈ [α, β].
This problem has for every ξ ∈ [α, β] a unique solution u ∈ PC1(J,R). Then we can
define the operator B : [α, β]→ PC1(J,R) by

(17) [Bξ](t) = u(t), t ∈ J,

where u is the unique solution of (16).
The mapping B defined by (17) satisfies

(i) α ≤ Bα and β ≥ Bβ on J.

(ii) For ξ1, ξ2 ∈ [α, β], ξ1 ≤ ξ2 on J implies Bξ1 ≤ Bξ2 on J (i.e., B is a monotone
operator on the segment [α, β].)
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To prove (i) let us set Bα = α1 and Bβ = β1, where α1, β1 are the unique
solutions of the problem (16) corresponding to ξ = α and ξ = β, respectively. We
first prove that α(t) ≤ α1(t), t ∈ J. Indeed, if we consider v(t) = α(t)− α1(t), t ∈ J,
then

v′(t) = α′(t)− α′1(t)
≤ f(t, [T α](t), α(t))− f(t, [T α](t), α(t)) +M(α1(t)− α(t))
= −Mv(t), t ∈ J ′,

4v(tk) = 4α(tk)−4α1(tk) ≤ Ik(α(tk))− Ik(α(tk)) = 0, k = 1, ..., p,
v(0) = α(0)− α1(0) ≤ u0 − u0 = 0.

Thus, Lemma 3.1 implies that v = α−α1 ≤ 0 on J. Analogously one can show that
β ≥ β1 on J.

Now, to prove (ii), let us set Bξ1 = y1 and Bξ2 = y2, where ξ1, ξ2 ∈ [α, β], ξ1 ≤ ξ2
on J and y1, y2 are the unique solutions of the problem (16) with ξ = ξ1 and ξ = ξ2,
respectively. Let v(t) = y1(t)− y2(t), t ∈ J. Using (15),(H4) and (H2) we have

v′(t) = y′1(t)− y′2(t)
= f(t, [T ξ1](t), ξ1(t))−M(y1(t)− ξ1(t))
− f(t, [T ξ2](t), ξ2(t)) +M(y2(t)− ξ2(t))

= f(t, [T ξ1](t), ξ1(t))− f(t, [T ξ2](t), ξ1(t))
+ f(t, [T ξ2](t), ξ1(t))− f(t, [T ξ2](t), ξ2(t))
−M(y1(t)− ξ1(t)) +M(y2(t)− ξ2(t))

≤ M(ξ2(t)− ξ1(t))−M(y1(t)− ξ1(t)) +M(y2(t)− ξ2(t))
= −M(y1(t)− y2(t))
= −Mv(t), t ∈ J ′,

∆v(tk) = ∆y1(tk)−∆y2(tk) = Ik(ξ1(tk))− Ik(ξ2(tk)) ≤ 0, k = 1, ..., p,
v(0) = y1(0)− y2(0) = 0.

Lemma 3.1 implies that v = y1 − y2 ≤ 0 on J.
The mapping B defined by (17) generates monotone sequences {αn}, {βn}, where

α1 = α,

αn+1 = Bαn, n > 1

and

β1 = β,

βn+1 = Bβn, n > 1.

In fact, we have

α(t) ≤ α1(t) ≤ ... ≤ αn(t) ≤ βn(t) ≤ ... ≤ β1(t) ≤ β(t), t ∈ J.

Note that the problem (16) is equivalent to the integral equation (4) if we replace
in (4), f(s, [T u](s), u(s)) by F (s, u(s)). The sequences {αn}, {βn}, are uniformly
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bounded and completely continuous, therefore the sequences are uniformly conver-
gent in (tk, tk+1], k = 0, ..., p. There exist ρ, r ∈ PC1(J,R) such that {αn} ↗ ρ and
{βn} ↘ r and ρ, r ∈ [α, β]. Employing the integral representation of the solution
of (16) we conclude that ρ and r are solutions of the problem (1)-(3). It is easy to
prove by an induction argument following an argument similar to that employed to
prove (ii) that

αn(t) ≤ y(t) ≤ βn(t), t ∈ J, n ∈ N,
where y ∈ [α, β] is any solution of (1)-(3). Taking the limit as n→∞ we get

ρ(t) ≤ y(t) ≤ r(t), t ∈ J,

what means that ρ, r are respectively minimal and maximal solutions of the (1)-(3).�

4. Global solutions. Let J = [0,∞), 0 < t1 < t2 < ... < tn < ..., lim
n→∞

tn =
+∞. Consider the functional-differential problem

x′(t) = f(t, [T x](t), x(t)), t ≥ 0, t 6= t1, t2, ..., tk, ...,(18)
∆x(tk) = Ik(x(tk)), k = 1, 2, ...(19)
x(0) = x0,(20)

where f, T , Ik(k = 1, 2, ...) are the same as in (1)-(3).

We require the following assumptions on function f and operator T .

(A1) Function f ∈ C(J × R× R,R) and there exist a, b ∈ C(J,R+) such that

|f(t, x, w)− f(t, y, z)| ≤ a(t)|x− y|+ b(t)|w − z|

for any x, y, w, z ∈ R, t ∈ J.

(A2) There exists c ∈ C(J,R+) such that

|[T x](t)− [T y](t)| ≤ c(t) max
s∈[tk−1,t]

|x(s)− y(s)|, t ∈ [tk−1, tk]

for any x, y ∈ PC(J,R) such that x = y in [0, tk−1], k = 1, 2, ...

Now we enunciate result parallel to Theorem 2.2 in [3]. There are some differences
but the idea and technique of proof are the same.

Theorem 4.1 Suppose that (A1),(A2) hold. Then equation (18)-(20) has a unique
solution x ∈ PC(J,R).

Proof Let x ∈ C ([0, t1],R) . Consider the following norm in C ([0, t1],R) :

‖ x ‖∗= max
t∈[0,t1]

{
e−M1t max

s∈[0,t]
|x(s)|

}
,
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where M1 = N1 +K, K > 0, N1 = max
t∈[0,t1]

{a(t)c(t) + b(t)} .
Consider the operator A1 : C ([0, t1],R)→ C ([0, t1],R) defined by

(A1x) (t) = x0 +
∫ t

0

f (s, [T x](s), x(s)) ds.

Then for x, y ∈ C ([0, t1],R) and t ∈ [0, t1], we have that

| (A1x) (t) − (A1y) (t)| ≤
∫ t

0

|f (s, [T x](s), x(s))− f (s, [T y](s), y(s))| ds

≤
∫ t

0

[a(s)|[T x](s)− [T y](s)|+ b(s)|x(s)− y(s)|] ds

≤
∫ t

0

[
a(s)c(s) max

τ∈[0,s]
|x(τ)− y(τ)|+ b(s) max

τ∈[0,s]
|x(τ)− y(τ)|

]
ds

=
∫ t

0

(a(s)c(s) + b(s)) eM1se−M1s max
τ∈[0,s]

|x(τ)− y(τ)|ds

≤
∫ t

0

(a(s)c(s) + b(s)) eM1s max
s∈[0,t]

{
e−M1s max

τ∈[0,s]
|x(τ)− y(τ)|

}
ds

≤ ‖ x− y ‖∗
∫ t

0

(a(s)c(s) + b(s)) eM1sds

≤ N1 ‖ x− y ‖∗
∫ t

0

eM1sds

=
N1

M1

(
eM1t − 1

)
‖ x− y ‖∗

≤ N1

M1
eM1t ‖ x− y ‖∗

Thus

max
s∈[0,t]

| (A1x) (s)− (A1y) (s)| ≤ N1

M1
‖ x− y ‖∗ max

s∈[0,t]
eM1s ≤ N1

M1
eM1t ‖ x− y ‖∗,

e−M1t max
s∈[0,t]

| (A1x) (s)− (A1y) (s)| ≤ N1

M1
‖ x− y ‖∗,

max
t∈[0,t1]

{
e−M1t max

s∈[0,t]
| (A1x) (s)− (A1y) (s)|

}
≤ N1

M1
‖ x− y ‖∗,

i.e.,

‖ A1x−A1y ‖∗≤
N1

M1
‖ x− y ‖∗ .

Thus A1 is a contractive operator and by Banach fixed point theorem, A1 has a
unique fixed point x∗1 ∈ C ([0, t1],R) .

For x ∈ C ([t1, t2],R) let

‖ x ‖∗= max
t∈[t1,t2]

{
e−M2(t−t1) max

s∈[t1,t]
|x(s)|

}
,
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where M2 = N2 +K, K > 0, N2 = max
t∈[t1,t2]

{a(t)c(t) + b(t)} .
Consider the operator A2 : C ([t1, t2],R)→ C ([t1, t2],R) defined by

(A2x) (t) = x∗1(t1) + I1(x∗1(t1)) +
∫ t

t1

f (s, [T x](s), x(s)) ds,

where x(τ) = x∗1(τ), τ ∈ [0, t1].
Then for x, y ∈ C ([t1, t2],R) and t ∈ [t1, t2], we have

| (A2x) (t) − (A2y) (t)| ≤
∫ t

t1

|f (s, [T x](s), x(s))− f (s, [T y](s), y(s))| ds

≤
∫ t

t1

[a(s)|[T x](s)− [T y](s)|+ b(s)|x(s)− y(s)|] ds

≤
∫ t

t1

[
a(s)c(s) max

τ∈[t1,s]
|x(τ)− y(τ)|+ b(s) max

τ∈[t1,s]
|x(τ)− y(τ)|

]
ds

=
∫ t

t1

(a(s)c(s) + b(s)) eM2(s−t1)e−M2(s−t1) max
τ∈[t1,s]

|x(τ)− y(τ)|ds

≤
∫ t

t1

(a(s)c(s) + b(s)) eM2(s−t1) max
s∈[t1,t]

{
e−M2(s−t1) max

τ∈[t1,s]
|x(τ)− y(τ)|

}
ds

≤ ‖ x− y ‖∗
∫ t

t1

(a(s)c(s) + b(s)) eM2(s−t1)ds

≤ N2 ‖ x− y ‖∗
∫ t

t1

eM2(s−t1)ds

=
N2

M2

(
eM2(t−t1) − 1

)
‖ x− y ‖∗

≤ N2

M2
eM2(t−t1) ‖ x− y ‖∗

Thus

max
s∈[t1,t]

| (A2x) (s)− (A2y) (s)| ≤ N2

M2
‖ x− y ‖∗ max

s∈[t1,t]
eM2(s−t1) ≤ N2

M2
eM2(t−t1) ‖ x− y ‖∗,

e−M2(t−t1) max
s∈[t1,t]

| (A2x) (s)− (A2y) (s)| ≤ N2

M2
‖ x− y ‖∗,

max
t∈[t1,t2]

{
e−M2(t−t1) max

s∈[t1,t]
| (A2x) (s)− (A2y) (s)|

}
≤ N2

M2
‖ x− y ‖∗,

i.e.,

‖ A2x−A2y ‖∗≤
N2

M2
‖ x− y ‖∗ .

Thus A2 is a contractive operator and by Banach fixed point theorem, A2 has a
unique fixed point x∗2 ∈ C ([t1, t2],R) .
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So forth and so on, for x ∈ C ([tn, tn+1],R) , let

‖ x ‖∗= max
t∈[tn,tn+1]

{
e−Mn+1(t−tn) max

s∈[tn,t]
|x(s)|

}
,

where Mn+1 = Nn+1 +K, K > 0, Nn+1 = max
t∈[tn,tn+1]

{a(t)c(t) + b(t)}
and

(An+1x) (t) = x∗n(tn) + In(x∗n(tn)) +
∫ t

tn

f (s, [T x](s), x(s)) ds,

where x(τ) = x∗1(τ), τ ∈ (0, t1], ..., x(τ) = x∗n(τ), τ ∈ (tn−1, tn].
Similarly, we can prove that An+1 has a unique fixed point x∗n+1 ∈ C ([tn, tn+1],R) .
The function

x∗(t) =





x∗1(t), t ∈ [0, t1]
x∗2(t), t ∈ (t1, t2]

·
·
·

x∗n(t), t ∈ (tn, tn+1]
·
·
·

is the unique solution of the problem (18)-(20). �

Example.

Consider the equation

(21)





x′(t) = t− x(t) cos t+ t2
∫ t

0
eτ−tx(τ)dτ, t ≥ 0, t 6= 1, 2, ..., k, ...;

∆x(k) =
1
2
x(k), k = 1, 2, ...;

x(0) = 0.

It is easy to verify that the function f(t, x, w) = t−x cos t+t2w, where t ≥ 0, x, w ∈ R
satisfies Assumption (A1) and the Voltera operator [T x](t) =

∫ t
0
eτ−tx(τ)dτ satisfies

assumption (A2). Hence, by Theorem 4.1, (21) has a unique global solutions.
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