ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Seria I: PRACE MATEMATYCZNE XUVII (2) (2007). 207-219

Lidia Skóra

Impulsive functional-differential equations of first order

Abstract. In this paper we present some existence results for impulsive functionaldifferential equations of first order.

2000 Mathematics Subject Classification: 34A37, 34K45, 34K05.

Key words and phrases: impulsive functional-differential equation, Volltera operator, upper and lower solutions, monotone iterative technique, global solutions.

1. Introduction. In recent years, problems with impulses have been studied by a number of authors, for example [1-5]. This work was motivated by [1],[3], where impulsive functional differential equations of first order and second order were considered. In this paper we discuss the integro-differential equations of first order with impulses at fixed moments. By the method of upper and lower solutions we obtain existence result in a sector, then using the monotone iterative scheme we prove the existence of extremal solutions. Finally, we investigate the existence and the uniqueness of the global solutions for impulsive integro-differential equations of first order. Our consideration is based on fixed point theorem.

2. Preliminaries. In this section we introduce notations and definitions which are used throughout this paper.

Let $J = [0,T], 0 = t_0 < t_1 < ... < t_p < t_{p+1} = T, J' = J \setminus \{t_1,...t_p\}, J_k = [t_{k-1}, t_k], k = 1, ..., p + 1.$

We define the following class of functions:

 $PC(J,\mathbb{R}) = \{u: J \to \mathbb{R} : u \in C(J',\mathbb{R}), \text{ there exist } u(t_k^+) \text{ and } u(t_k^-) = u(t_k), k = 1, 2, ..., p\}.$

$$PC^{1}(J,\mathbb{R}) = \{ u \in PC(J,\mathbb{R}) : u_{|(t_{k-1},t_{k})} \in C^{1}((t_{k-1},t_{k}),\mathbb{R}), k = 1,...,p+1,$$

there exist $u'(0^{+}), u'(T^{-}), u'(t_{k}^{+}), k = 1,2,...,p \}.$

Let us consider the functional differential problem of the form

- (1) $u'(t) = f(t, [\mathcal{T}u](t), u(t)), \quad t \in int \ J_k, \ k = 1, ..., p+1,$
- (2) $\Delta u(t_k) = I_k(u(t_k)), \ k = 1, ..., p,$
- $(3) u(0) = u_0,$

where $\mathcal{T} : PC(J, \mathbb{R}) \to PC(J, \mathbb{R})$ is a Voltera operator, $f : J \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, $\Delta u(t_k) = u(t_k^+) - u(t_k), I_k : \mathbb{R} \to \mathbb{R}$ for each k = 1, ..., p. We assume that \mathcal{T} is continuous, monotone nondecreasing and for any bounded set $E \subset PC(J, \mathbb{R}), \mathcal{T}E$ is bounded.

By a solution of (1)-(3) we mean a function $u \in PC^1(J, \mathbb{R})$ satisfying (1)-(3).

DEFINITION 2.1 A function $\alpha \in PC^1(J, \mathbb{R})$ is said to be a lower solution of problem (1)-(3) if

$$\begin{aligned} \alpha'(t) &\leq f(t, [\mathcal{T}\alpha](t), \alpha(t)), \quad t \in int \ J_k, \ k = 1, \dots, p+1, \\ \Delta\alpha(t_k) &\leq I_k(\alpha(t_k)), \ k = 1, \dots, p, \\ \alpha(0) &\leq u_0, \end{aligned}$$

and an upper solution of (1)-(3) if the above inequalities are reversed.

If $\alpha, \beta \in PC(J, \mathbb{R})$ satisfy $\alpha(t) \leq \beta(t), t \in J$, then we write $\alpha \leq \beta$ and define the sector

$$[\alpha,\beta] = \{ v \in PC(J,\mathbb{R}) : \alpha \le v \le \beta \}.$$

We introduce the following assumptions:

(H1) $f: J \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is continuous at each point $(t, x, y) \in J' \times \mathbb{R} \times \mathbb{R}$. We assume that for all $x, y \in \mathbb{R}$ there exist the limits

$$\lim_{t \to t_k^-} f(t, x, y) = f(t_k, x, y)$$

for k = 1, ..., p + 1; and

$$\lim_{t \to t_k^+} f(t, x, y)$$

for k = 0, ..., p.

- (H2) $I_k : \mathbb{R} \to \mathbb{R}$ are continuous and nondecreasing for each k = 1, ..., p.
- (H3) There exist $\alpha, \beta \in PC^1(J, \mathbb{R})$ such that $\alpha(t) \leq \beta(t), t \in J$, where α, β are lower and upper solution of (1)-(3) respectively.

(H4) f(t, u, v) is nondecreasing in u for each (t, v) such that $t \in J, \alpha(t) \le v \le \beta(t)$.

Note that problems (1)-(3) are equivalent to the integral equations.

LEMMA 2.2 If $f \in C(J' \times \mathbb{R} \times \mathbb{R}, \mathbb{R})$, then $u \in PC(J, \mathbb{R})$ is a solution of (1)-(3) if and only if $u \in PC^1(J, \mathbb{R})$ is a solution of following equation

(4)
$$u(t) = u_0 + \int_0^t f(s, [\mathcal{T}u](s), u(s)) ds + \sum_{0 < t_k < t} I_k(u(t_k)), \ t \in J.$$

THEOREM 2.3 Let the assumptions (H1)-(H4) hold. Then the problem (1)-(3) has a solution $u \in [\alpha, \beta]$.

PROOF Let $v \in \mathbb{R}, t \in J$. Denote

$$p(v) = \max[\alpha(t), \min(v, \beta(t))],$$

$$\gamma(v) = \begin{cases} \frac{-v + \beta(t)}{1 + v^2}, & v \ge \beta(t) \\ 0, & \alpha(t) \le v \le \beta(t) \\ \frac{\alpha(t) - v}{1 + v^2}, & v \le \alpha(t). \end{cases}$$

If $u: J \to \mathbb{R}$, then by p(u) we denote the function $p(u): J \ni t \to p(u(t)) \in \mathbb{R}$, Consider the initial problem

(5)
$$u'(t) = F(t, [\mathcal{T}u](t), u(t)), \ t \in [0, t_1],$$

$$(6) u(0) = u_0,$$

where

$$F(t, [\mathcal{T}u](t), u(t)) = f(t, [\mathcal{T}p(u)](t), p(u(t))) + \gamma(u(t))$$

From the definition of p(u) and the monotone character of \mathcal{T} we have

 $\alpha(t) \le p(u)(t) \le \beta(t), \ t \in [0, t_1],$

(7)
$$[\mathcal{T}\alpha](t) \le [\mathcal{T}p(u)](t) \le [\mathcal{T}\beta](t), t \in [0, t_1].$$

F is bounded and continuous on $[0,t_1] \times \Sigma \times \Omega = \{(t,v,u) \in \mathbb{R}^3 : t \in [0,t_1], [\mathcal{T}\alpha](t) \leq v \leq [\mathcal{T}\beta](t), \alpha(t) \leq u \leq \beta(t)\}$, i.e. there exists M > 0 such that for any $(t,v,u) \in [0,t_1] \times \Sigma \times \Omega$ we have |F(t,v,u)| < M. If we replace in (4) $f(s,[\mathcal{T}u](s),u(s))$ by $F(s,[\mathcal{T}u](s),u(s))$ and $t \in [0,t_1]$ then (4) is equivalent to (5)-(6). Next we define an operator $S : C([0,t_1],\mathbb{R}) \to C([0,t_1],\mathbb{R})$. For any $u \in C([0,t_1],\mathbb{R})$, let

$$(Su)(t) = u_0 + \int_0^t F(s, [\mathcal{T}u](s), u(s))ds, \ t \in [0, t_1].$$

The operator ${\cal S}$ is continuous. Let

$$B = \left\{ u \in C\left([0, t_1], \mathbb{R}\right) : \sup_{t \in [0, t_1]} |u(t)| \le |u_0| + Mt_1 \right\}.$$

Then B is convex, closed and bounded. For $u \in B, t \in [0, t_1]$, we get

$$|(Su)(t)| = \left| u_0 + \int_0^t F(s, [\mathcal{T}u](s), u(s)) ds \right| \le |u_0| + Mt$$

Then

$$\sup_{t \in [0,t_1]} |(Su)(t)| \le |u_0| + Mt_1.$$

So $SB \subseteq B$. By an application of Schauder's fixed point theorem, the initial problem (5)-(6) has a solution u_1 on $[0, t_1]$.

We shall now prove that $\alpha(t) \leq u_1(t) \leq \beta(t), t \in [0, t_1]$. Put $m(t) = \alpha(t) - u_1(t), t \in [0, t_1]$. If the inequality $\alpha(t) \leq u_1(t), t \in [0, t_1]$ is not true, then there exists a $\tilde{t} \in (0, t_1]$ such that

$$m(\tilde{t}) = \max_{t \in [0,t_1]} m(t) = \varepsilon > 0.$$

We consider two following cases:

Case I. Suppose $\tilde{t} \in (0, t_1)$. In consequence

$$m'(\tilde{t}) = 0.$$

Since $\alpha(\tilde{t}) > u_1(\tilde{t})$, then $p(u_1(\tilde{t})) = \alpha(\tilde{t})$ and

(8)
$$0 = m'(\tilde{t}) = \alpha'(\tilde{t}) - u_1'(\tilde{t}) \le f(\tilde{t}, [\mathcal{T}\alpha](\tilde{t}), \alpha(\tilde{t})) \\ -f(\tilde{t}, [\mathcal{T}p(u_1)](\tilde{t}), p(u_1(\tilde{t}))) - \frac{\varepsilon}{1 + u_1^2(\tilde{t})}.$$

Moreover, in view of (7) and (H4),

$$f(\tilde{t}, [\mathcal{T}\alpha](\tilde{t}), \alpha(\tilde{t})) - f(\tilde{t}, [\mathcal{T}p(u_1)](\tilde{t}), \alpha(\tilde{t})) \le 0.$$

From this and (8) we obtain the contradiction

$$0 = m'(\tilde{t}) \le -\frac{\varepsilon}{1 + u_1^2(\tilde{t})} < 0.$$

Case II. Suppose that $\tilde{t} = t_1$ i.e., $m(t_1) = \alpha(t_1) - u_1(t_1) = \varepsilon$. Since $m(t) < \varepsilon$ for $t \in [0, t_1)$, then there exists a sequence $\tau_{\nu} \in [0, t_1), \tau_{\nu} < \tau_{\nu+1}$ such that $\lim_{\nu \to \infty} \tau_{\nu} = t_1$

and $D_{-}m(\tau_{\nu}) = \liminf_{h \to 0^{-}} \frac{m(\tau_{\nu} + h) - m(\tau_{\nu})}{h} \ge 0.$

Let N_0 be such positive integer that for $\nu \ge N_0$ we have $\alpha(\tau_{\nu}) - u_1(\tau_{\nu}) > 0$. Then it follows that

(9)
$$0 \le D_{-}m(\tau_{\nu}) \le \alpha'(\tau_{\nu}) - u_{1}'(\tau_{\nu}) \le f(\tau_{\nu}, [\mathcal{T}\alpha](\tau_{\nu}), \alpha(\tau_{\nu})) \\ -f(\tau_{\nu}, [\mathcal{T}p(u_{1})](\tau_{\nu}), p(u_{1}(\tau_{\nu}))) - \frac{\varepsilon}{1 + u_{1}^{2}(\tau_{\nu})}.$$

Since $\alpha(\tau_{\nu}) > u_1(\tau_{\nu})$, then $p(u_1(\tau_{\nu})) = \alpha(\tau_{\nu})$. Moreover, in view of (7) and (H4),

$$f(\tau_{\nu}, [\mathcal{T}\alpha](\tau_{\nu}), \alpha(\tau_{\nu})) - f(\tau_{\nu}, [\mathcal{T}p(u_1)](\tau_{\nu}), \alpha(\tau_{\nu})) \le 0.$$

From this and (9) we obtain the contradiction

$$0 \le m'(\tau_{\nu}) \le -\frac{\varepsilon}{1+u_1^2(\tau_{\nu})} < 0.$$

Similarly, we can prove $u_1t \leq \beta(t), t \in [0, t_1]$. Since $\alpha(t_1) \leq u_1(t_1) \leq \beta(t_1)$ and I_1 is nondecreasing, we get

$$I_1(\alpha(t_1)) \le I_1(u_1(t_1)) \le I_1(\beta(t_1)).$$

From this, by the definition of lower and upper solution, we have

$$\alpha(t_1^+) \le \alpha(t_1) + I_1(\alpha(t_1) \le u_1(t_1) + I_1(u_1(t_1)) \le \beta(t_1) + I_1(\beta(t_1)) \le \beta(t_1^+).$$

Then

$$\alpha(t_1^+) \le u_1(t_1) + I_1(u_1(t_1)) \le \beta(t_1^+).$$

Repeating the same arguments, we can show that the problem

$$u'(t) = F(t, [\mathcal{T}u](t), u(t)), \ t \in (t_1, t_2],$$
$$u(t_1^+) = u_1(t_1) + I_1(u_1(t_1)),$$

where $u(s) = u_1(s), s \in [0, t_1]$, has a solution u_2 such that $\alpha(t) \leq u_2(t) \leq \beta(t), t \in (t_1, t_2]$.

So forth and so on, for $t \in (t_p, t_{p+1}]$, we consider the initial problem

$$u'(t) = F(t, [\mathcal{T}u](t), u(t)), \ t \in (t_p, t_{p+1}],$$
$$u(t_p^+) = u_p(t_p) + I_p(u_p(t_p)).$$

Similarly, we can prove that this problem has a solution u_{p+1} such that $\alpha(t) \leq u_{p+1}(t) \leq \beta(t), t \in (t_p, t_{p+1}]$. Continuing the proof, let

$$u(t) = \begin{cases} u_1(t), & t \in [0, t_1]; \\ u_2(t), & t \in (t_1, t_2]; \\ \dots, & \dots \\ u_{p+1}(t), & t \in (t_p, t_{p+1}] \end{cases}$$

Then u is a solution of problem (1)-(3) and $\alpha(t) \leq u(t) \leq \beta(t), t \in J$.

Next we consider the impulsive equation

(10)
$$u'(t) = f(t, [\mathcal{T}u](t), u(t)), \quad t \in int \ J_k, \ k = 1, ..., p+1,$$

(11)
$$\Delta u(t_k) = I_k(u(t_k)), \ k = 1, ..., p,$$

subject to the periodic boundary condition

$$(12) u(0) = u(T).$$

DEFINITION 2.4 A function $\alpha \in PC^1(J, \mathbb{R})$ is said to be a lower solution of problem (10)-(12) if

$$\alpha'(t) \le f(t, [\mathcal{T}\alpha](t), \alpha(t)), \quad t \in int \ J_k, \ k = 1, ..., p+1, \\ \Delta\alpha(t_k) \le I_k(\alpha(t_k)), \ k = 1, ..., p, \\ \alpha(0) \le \alpha(T)$$

and an upper solution of (10)-(12) if the above inequalities are reversed.

By applying Definition 2.4 and Theorem 2.3 we have the following result:

THEOREM 2.5 Let the assumptions (H1),(H2) and (H4) hold. Assume there exist $\alpha, \beta \in PC^1(J, \mathbb{R})$ such that α, β are lower and upper solutions of (10)-(12) respectively, $\alpha(t) \leq \beta(t), t \in J$ and $\alpha(0) = \beta(0)$. Then problem (10)-(12) has a solution $u \in [\alpha, \beta]$.

PROOF Let $u(\cdot; \alpha(0)) \in [\alpha, \beta]$ denotes the solution of the following problem

$$u'(t) = f(t, [\mathcal{T}u](t), u(t)), \quad t \in int \ J_k, \ k = 1, ..., p + 1,$$

$$\Delta u(t_k) = I_k(u(t_k)), \ k = 1, ..., p,$$

$$u(0) = \alpha(0).$$

The existence of a solution to the above problem follows from Theorem 2.3. Hence, by the definition of the lower and upper solution we have

$$\alpha(0) \le \alpha(T) \le u(T; \alpha(0)),$$

$$\beta(0) \ge \beta(T) \ge u(T; \alpha(0)).$$

Since $\alpha(0) = \beta(0)$, then

$$\alpha(0) \le u(T; \alpha(0)) \le \beta(T) \le \beta(0) = \alpha(0).$$

Thus

$$u\left(T;\alpha(0)\right) = \alpha(0).$$

We prove that $u = u(\cdot; \alpha(0))$ is a solution of (10)-(12).

3. Monotone iterative method. In this section we establish existence criteria for extremal solutions of the problem (1)-(3) by the method of lower and upper solutions and the monotone method. Now we introduce simple result, which plays an important role in monotone iterative technique.

LEMMA 3.1 Let $u \in PC^1(J, \mathbb{R}), m \in PC(J, R)$ such that

$$u'(t) \le m(t)u(t), \quad t \in J',$$

$$\triangle u(t_k) \le 0, \quad k = 1, ..., p,$$

$$u(0) \le 0.$$

Then $u(t) \leq 0, t \in J$.

PROOF We first note that if $u \in PC^1(J, \mathbb{R}), m, \sigma \in PC(J, \mathbb{R}), d_k \in \mathbb{R}, k = 1, ..., p$ verify

(13)
$$u'(t) = m(t)u(t) + \sigma(t), t \in J',$$
$$\triangle u(t_k) = d_k, \quad k = 1, ..., p$$
$$u(0) = u_0,$$

then u can be expressed as

(14)
$$u(t) = u_0 e^{M(t)} + \int_0^t e^{M(t) - M(s)} \sigma(s) ds + \sum_{\{k: 0 < t_k < t\}} \left(e^{M(t) - M(t_k)} \right) d_k,$$

where $M(t) = \int_0^t m(r) dr$. Apply (13) and (14) with $\sigma(t) \leq 0, t \in J, u_0 \leq 0$ and $d_k \leq 0, \ k = 1, ..., p$ we obtain our result.

THEOREM 3.2 Let the assumptions (H1)-(H4) hold and there exists $M \ge 0$ such that the function f satisfy the following condition

(15)
$$f(t, u, v_1) - f(t, u, v_2) \ge -M(v_1 - v_2),$$

for $t \in J$, $[\mathcal{T}\alpha](t) \leq u \leq [\mathcal{T}\beta](t)$, $\beta(t) \geq v_1 \geq v_2 \geq \alpha(t)$. Then there exist monotone sequences $\{\alpha_n\}_{n=1}^{\infty}, \{\beta_n\}_{n=1}^{\infty}$, such that $\lim_{n \to \infty} \alpha_n(t) = \rho(t)$, $\lim_{n \to \infty} \beta_n(t) = r(t)$ monotonically and piecewise uniformly on J, where ρ and r are the minimal and maximal solutions of (1)-(3), respectively.

PROOF Let us consider the following problem

(16)
$$u'(t) = F(t, u(t)), t \in J', \Delta u(t_k) = I_k(\xi(t_k)), \ k = 1, ..., p$$
$$u(0) = u_0,$$

where

$$F(t, u(t)) = f(t, [T\xi](t), \xi(t)) - M(u(t) - \xi(t))$$

for any $t \in J, \xi \in [\alpha, \beta]$.

This problem has for every $\xi \in [\alpha, \beta]$ a unique solution $u \in PC^1(J, \mathbb{R})$. Then we can define the operator $B : [\alpha, \beta] \to PC^1(J, \mathbb{R})$ by

$$[B\xi](t) = u(t), \ t \in J,$$

where u is the unique solution of (16). The mapping B defined by (17) satisfies

- (i) $\alpha \leq B\alpha$ and $\beta \geq B\beta$ on J.
- (ii) For $\xi_1, \xi_2 \in [\alpha, \beta], \xi_1 \leq \xi_2$ on J implies $B\xi_1 \leq B\xi_2$ on J (i.e., B is a monotone operator on the segment $[\alpha, \beta]$.)

To prove (i) let us set $B\alpha = \alpha_1$ and $B\beta = \beta_1$, where α_1, β_1 are the unique solutions of the problem (16) corresponding to $\xi = \alpha$ and $\xi = \beta$, respectively. We first prove that $\alpha(t) \leq \alpha_1(t), t \in J$. Indeed, if we consider $v(t) = \alpha(t) - \alpha_1(t), t \in J$, then

$$\begin{aligned} v'(t) &= \alpha'(t) - \alpha'_{1}(t) \\ &\leq f(t, [\mathcal{T}\alpha](t), \alpha(t)) - f(t, [\mathcal{T}\alpha](t), \alpha(t)) + M(\alpha_{1}(t) - \alpha(t)) \\ &= -Mv(t), \quad t \in J', \\ \triangle v(t_{k}) &= \triangle \alpha(t_{k}) - \triangle \alpha_{1}(t_{k}) \leq I_{k}(\alpha(t_{k})) - I_{k}(\alpha(t_{k})) = 0, \ k = 1, ..., p, \\ v(0) &= \alpha(0) - \alpha_{1}(0) \leq u_{0} - u_{0} = 0. \end{aligned}$$

Thus, Lemma 3.1 implies that $v = \alpha - \alpha_1 \leq 0$ on J. Analogously one can show that $\beta \geq \beta_1$ on J.

Now, to prove (ii), let us set $B\xi_1 = y_1$ and $B\xi_2 = y_2$, where $\xi_1, \xi_2 \in [\alpha, \beta], \xi_1 \leq \xi_2$ on J and y_1, y_2 are the unique solutions of the problem (16) with $\xi = \xi_1$ and $\xi = \xi_2$, respectively. Let $v(t) = y_1(t) - y_2(t), t \in J$. Using (15),(H4) and (H2) we have

$$\begin{split} v'(t) &= y_1'(t) - y_2'(t) \\ &= f(t, [T\xi_1](t), \xi_1(t)) - M(y_1(t) - \xi_1(t)) \\ &- f(t, [T\xi_2](t), \xi_2(t)) + M(y_2(t) - \xi_2(t)) \\ &= f(t, [T\xi_1](t), \xi_1(t)) - f(t, [T\xi_2](t), \xi_1(t)) \\ &+ f(t, [T\xi_2](t), \xi_1(t)) - f(t, [T\xi_2](t), \xi_2(t)) \\ &- M(y_1(t) - \xi_1(t)) + M(y_2(t) - \xi_2(t)) \\ &\leq M(\xi_2(t) - \xi_1(t)) - M(y_1(t) - \xi_1(t)) + M(y_2(t) - \xi_2(t)) \\ &= -M(y_1(t) - y_2(t)) \\ &= -Mv(t), \quad t \in J', \\ \Delta v(t_k) &= \Delta y_1(t_k) - \Delta y_2(t_k) = I_k(\xi_1(t_k)) - I_k(\xi_2(t_k)) \leq 0, k = 1, ..., p, \\ v(0) &= y_1(0) - y_2(0) = 0. \end{split}$$

Lemma 3.1 implies that $v = y_1 - y_2 \le 0$ on J.

The mapping B defined by (17) generates monotone sequences $\{\alpha_n\}, \{\beta_n\}$, where

$$\begin{aligned} \alpha_1 &= \alpha, \\ \alpha_{n+1} &= B\alpha_n, \quad n > 1 \end{aligned}$$

and

$$\begin{split} \beta_1 &= \beta, \\ \beta_{n+1} &= B\beta_n, \quad n>1. \end{split}$$

In fact, we have

$$\alpha(t) \le \alpha_1(t) \le \dots \le \alpha_n(t) \le \beta_n(t) \le \dots \le \beta_1(t) \le \beta(t), \quad t \in J$$

Note that the problem (16) is equivalent to the integral equation (4) if we replace in (4), $f(s, [\mathcal{T}u](s), u(s))$ by F(s, u(s)). The sequences $\{\alpha_n\}, \{\beta_n\}$, are uniformly bounded and completely continuous, therefore the sequences are uniformly convergent in $(t_k, t_{k+1}], k = 0, ..., p$. There exist $\rho, r \in PC^1(J, \mathbb{R})$ such that $\{\alpha_n\} \nearrow \rho$ and $\{\beta_n\} \searrow r$ and $\rho, r \in [\alpha, \beta]$. Employing the integral representation of the solution of (16) we conclude that ρ and r are solutions of the problem (1)-(3). It is easy to prove by an induction argument following an argument similar to that employed to prove (ii) that

$$\alpha_n(t) \le y(t) \le \beta_n(t), t \in J, n \in N,$$

where $y \in [\alpha, \beta]$ is any solution of (1)-(3). Taking the limit as $n \to \infty$ we get

$$\rho(t) \le y(t) \le r(t), t \in J,$$

what means that ρ, r are respectively minimal and maximal solutions of the (1)-(3).

4. Global solutions. Let $J = [0, \infty)$, $0 < t_1 < t_2 < ... < t_n < ..., \lim_{n \to \infty} t_n = +\infty$. Consider the functional-differential problem

(18)
$$x'(t) = f(t, [\mathcal{T}x](t), x(t)), \quad t \ge 0, t \ne t_1, t_2, ..., t_k, ...,$$

(19) $\Delta x(t_k) = I_k(x(t_k)), \ k = 1, 2, \dots$

$$(20) x(0) = x_0$$

where $f, T, I_k (k = 1, 2, ...)$ are the same as in (1)-(3).

We require the following assumptions on function f and operator \mathcal{T} .

(A1) Function $f \in C(J \times \mathbb{R} \times \mathbb{R}, \mathbb{R})$ and there exist $a, b \in C(J, \mathbb{R}^+)$ such that

$$|f(t, x, w) - f(t, y, z)| \le a(t)|x - y| + b(t)|w - z|$$

for any $x, y, w, z \in \mathbb{R}, t \in J$.

(A2) There exists $c \in C(J, \mathbb{R}^+)$ such that

$$|[\mathcal{T}x](t) - [\mathcal{T}y](t)| \le c(t) \max_{s \in [t_{k-1}, t]} |x(s) - y(s)|, \ t \in [t_{k-1}, t_k]$$

for any $x, y \in PC(J, \mathbb{R})$ such that x = y in $[0, t_{k-1}], k = 1, 2, ...$

Now we enunciate result parallel to Theorem 2.2 in [3]. There are some differences but the idea and technique of proof are the same.

THEOREM 4.1 Suppose that (A1),(A2) hold. Then equation (18)-(20) has a unique solution $x \in PC(J, \mathbb{R})$.

PROOF Let $x \in C([0, t_1], \mathbb{R})$. Consider the following norm in $C([0, t_1], \mathbb{R})$:

$$\|x\|_{*} = \max_{t \in [0,t_{1}]} \left\{ e^{-M_{1}t} \max_{s \in [0,t_{1}]} |x(s)| \right\},$$

where $M_1 = N_1 + K$, K > 0, $N_1 = \max_{t \in [0,t_1]} \{a(t)c(t) + b(t)\}$. Consider the operator $A_1 : C([0,t_1],\mathbb{R}) \to C([0,t_1],\mathbb{R})$ defined by

$$(A_1x)(t) = x_0 + \int_0^t f(s, [\mathcal{T}x](s), x(s)) \, ds.$$

Then for $x,y\in C\left([0,t_1],\mathbb{R}\right)$ and $t\in[0,t_1],$ we have that

$$\begin{split} |(A_1x)(t) - (A_1y)(t)| &\leq \int_0^t |f(s, [\mathcal{T}x](s), x(s)) - f(s, [\mathcal{T}y](s), y(s))| \, ds \\ &\leq \int_0^t [a(s)|[\mathcal{T}x](s) - [\mathcal{T}y](s)| + b(s)|x(s) - y(s)|] \, ds \\ &\leq \int_0^t \left[a(s)c(s) \max_{\tau \in [0,s]} |x(\tau) - y(\tau)| + b(s) \max_{\tau \in [0,s]} |x(\tau) - y(\tau)| \right] \, ds \\ &= \int_0^t (a(s)c(s) + b(s)) e^{M_1s} e^{-M_1s} \max_{\tau \in [0,s]} |x(\tau) - y(\tau)| \, ds \\ &\leq \int_0^t (a(s)c(s) + b(s)) e^{M_1s} \max_{s \in [0,t]} \left\{ e^{-M_1s} \max_{\tau \in [0,s]} |x(\tau) - y(\tau)| \right\} \, ds \\ &\leq \|x - y\|_* \int_0^t (a(s)c(s) + b(s)) e^{M_1s} \, ds \\ &\leq N_1 \|x - y\|_* \int_0^t e^{M_1s} \, ds \\ &= \frac{N_1}{M_1} \left(e^{M_1t} - 1 \right) \|x - y\|_* \\ &\leq \frac{N_1}{M_1} e^{M_1t} \|x - y\|_* \end{split}$$

Thus

$$\begin{split} \max_{s \in [0,t]} | (A_1 x) (s) - (A_1 y) (s) | &\leq \frac{N_1}{M_1} \parallel x - y \parallel_* \max_{s \in [0,t]} e^{M_1 s} \leq \frac{N_1}{M_1} e^{M_1 t} \parallel x - y \parallel_*, \\ e^{-M_1 t} \max_{s \in [0,t]} | (A_1 x) (s) - (A_1 y) (s) | \leq \frac{N_1}{M_1} \parallel x - y \parallel_*, \\ \max_{t \in [0,t_1]} \left\{ e^{-M_1 t} \max_{s \in [0,t]} | (A_1 x) (s) - (A_1 y) (s) | \right\} \leq \frac{N_1}{M_1} \parallel x - y \parallel_*, \end{split}$$

i.e.,

$$|| A_1 x - A_1 y ||_* \le \frac{N_1}{M_1} || x - y ||_*.$$

Thus A_1 is a contractive operator and by Banach fixed point theorem, A_1 has a unique fixed point $x_1^* \in C([0, t_1], \mathbb{R})$. For $x \in C([t_1, t_2], \mathbb{R})$ let

$$\|x\|_{*} = \max_{t \in [t_{1}, t_{2}]} \left\{ e^{-M_{2}(t-t_{1})} \max_{s \in [t_{1}, t]} |x(s)| \right\},$$

where $M_2 = N_2 + K$, K > 0, $N_2 = \max_{t \in [t_1, t_2]} \{a(t)c(t) + b(t)\}$. Consider the operator $A_2 : C\left([t_1, t_2], \mathbb{R}\right) \to C\left([t_1, t_2], \mathbb{R}\right)$ defined by

$$(A_2x)(t) = x_1^*(t_1) + I_1(x_1^*(t_1)) + \int_{t_1}^t f(s, [\mathcal{T}x](s), x(s)) \, ds,$$

where $x(\tau) = x_1^*(\tau), \tau \in [0, t_1]$. Then for $x, y \in C([t_1, t_2], \mathbb{R})$ and $t \in [t_1, t_2]$, we have

$$\begin{split} |(A_{2}x)(t) - (A_{2}y)(t)| &\leq \int_{t_{1}}^{t} |f(s, [Tx](s), x(s)) - f(s, [Ty](s), y(s))| \, ds \\ &\leq \int_{t_{1}}^{t} [a(s)|[Tx](s) - [Ty](s)| + b(s)|x(s) - y(s)|] \, ds \\ &\leq \int_{t_{1}}^{t} \left[a(s)c(s) \max_{\tau \in [t_{1},s]} |x(\tau) - y(\tau)| + b(s) \max_{\tau \in [t_{1},s]} |x(\tau) - y(\tau)| \right] \, ds \\ &= \int_{t_{1}}^{t} (a(s)c(s) + b(s)) \, e^{M_{2}(s-t_{1})} e^{-M_{2}(s-t_{1})} \max_{\tau \in [t_{1},s]} |x(\tau) - y(\tau)| \, ds \\ &\leq \int_{t_{1}}^{t} (a(s)c(s) + b(s)) \, e^{M_{2}(s-t_{1})} \max_{s \in [t_{1},t]} \left\{ e^{-M_{2}(s-t_{1})} \max_{\tau \in [t_{1},s]} |x(\tau) - y(\tau)| \right\} \, ds \\ &\leq \|x - y\|_{*} \int_{t_{1}}^{t} (a(s)c(s) + b(s)) \, e^{M_{2}(s-t_{1})} \, ds \\ &\leq N_{2} \|x - y\|_{*} \int_{t_{1}}^{t} e^{M_{2}(s-t_{1})} \, ds \\ &= \frac{N_{2}}{M_{2}} \left(e^{M_{2}(t-t_{1})} - 1 \right) \|x - y\|_{*} \\ &\leq \frac{N_{2}}{M_{2}} e^{M_{2}(t-t_{1})} \|x - y\|_{*} \end{split}$$

Thus

$$\begin{aligned} \max_{s \in [t_1, t]} | (A_2 x) (s) - (A_2 y) (s) | &\leq \frac{N_2}{M_2} \parallel x - y \parallel_* \max_{s \in [t_1, t]} e^{M_2 (s - t_1)} \leq \frac{N_2}{M_2} e^{M_2 (t - t_1)} \parallel x - y \parallel_*, \\ e^{-M_2 (t - t_1)} \max_{s \in [t_1, t]} | (A_2 x) (s) - (A_2 y) (s) | \leq \frac{N_2}{M_2} \parallel x - y \parallel_*, \\ \max_{t \in [t_1, t_2]} \left\{ e^{-M_2 (t - t_1)} \max_{s \in [t_1, t]} | (A_2 x) (s) - (A_2 y) (s) | \right\} \leq \frac{N_2}{M_2} \parallel x - y \parallel_*, \end{aligned}$$

i.e.,

$$|| A_2 x - A_2 y ||_* \le \frac{N_2}{M_2} || x - y ||_*.$$

Thus A_2 is a contractive operator and by Banach fixed point theorem, A_2 has a unique fixed point $x_2^* \in C([t_1, t_2], \mathbb{R})$.

So forth and so on, for $x \in C([t_n, t_{n+1}], \mathbb{R})$, let

$$\|x\|_{*} = \max_{t \in [t_{n}, t_{n+1}]} \left\{ e^{-M_{n+1}(t-t_{n})} \max_{s \in [t_{n}, t]} |x(s)| \right\},$$

where $M_{n+1} = N_{n+1} + K$, K > 0, $N_{n+1} = \max_{t \in [t_n, t_{n+1}]} \{a(t)c(t) + b(t)\}$

and

$$(A_{n+1}x)(t) = x_n^*(t_n) + I_n(x_n^*(t_n)) + \int_{t_n}^t f(s, [\mathcal{T}x](s), x(s)) \, ds,$$

where $x(\tau) = x_1^*(\tau), \tau \in (0, t_1], ..., x(\tau) = x_n^*(\tau), \tau \in (t_{n-1}, t_n].$ Similarly, we can prove that A_{n+1} has a unique fixed point $x_{n+1}^* \in C([t_n, t_{n+1}], \mathbb{R})$. The function

$$x^{*}(t) = \begin{cases} x_{1}^{*}(t), & t \in [0, t_{1}] \\ x_{2}^{*}(t), & t \in (t_{1}, t_{2}] \\ & \cdot \\ & \cdot \\ x_{n}^{*}(t), & t \in (t_{n}, t_{n+1}] \\ & \cdot \\ &$$

is the unique solution of the problem (18)-(20).

Example.

Consider the equation

(21)
$$\begin{cases} x'(t) = t - x(t)\cos t + t^2 \int_0^t e^{\tau - t} x(\tau) d\tau, & t \ge 0, \ t \ne 1, 2, ..., k, ...; \\ \Delta x(k) = \frac{1}{2} x(k), & k = 1, 2, ...; \\ x(0) = 0. \end{cases}$$

It is easy to verify that the function $f(t, x, w) = t - x \cos t + t^2 w$, where $t \ge 0, x, w \in \mathbb{R}$ satisfies Assumption (A1) and the Voltera operator $[\mathcal{T}x](t) = \int_0^t e^{\tau - t} x(\tau) d\tau$ satisfies assumption (A2). Hence, by Theorem 4.1, (21) has a unique global solutions.

References

- L.H. Erbe and X. Liu, Boundary Value Problems for Nonlinear Integrodifferential Equations, Applied Mathematics and Computation 36, (1990), 31-50.
- [2] D. Franco, J.J. Nieto, First-order impulsive ordinary differential equations with anti-periodic and nonlinear boundary conditions, Nonlinear Analysis 42 (2000), 163-173.
- [3] Xilin Fu, Baoqiang Yan, The global solutions of impulsive retarded functional- differential equations, International Journal of Applied Mathematics, 2 (3)(2000), 389-398.
- [4] Jianli Li, Jianhua Shen, Periodic boundary value problems for delay differential equatins with impulses, Journal of Computational and Applied Mathematics 193 (2006), 563-573.

[5] L. Skóra, Monotone iterative technique for impulsive retarded differential-functional equations system, Demonstratio Mathematica, Vol. XXXVII, No 1 (2004), 101-113.

LIDIA SKÓRA INSTITUTE OF MATHEMATICS, CRACOW TECHNICAL UNIVERSITY WARSZAWSKA 24 31-155 KRAKÓW *E-mail:* lskora@usk.pk.edu.pl

(Received: 12.06.2007)

_