PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 46 | 2 |
Tytuł artykułu

Notes on binary trees of elements in \(C(K)\) spaces with an application to a proof of a theorem of H. P. Rosenthal

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A Banach space \(X\) contains an isomorphic copy of \(C([0, 1])\), if it contains a binary tree \((e_n)\) with the following properties (1) \(e_n = e_{2n} + e_{2n+1}\) and (2) \(c \max_{2^n\leq k\tl 2^{n+1}} |a_k| \leq \|\sum_{k=2^n}^{2^{n+1}-1} a_k e_k \leq C\max_{2^n\leq k\lt 2^{n+1}} |a_k|\) for some constants \(0\lt c \leq C\) and every \(n\) and any scalars \(a_{2^n},\dots, a_{2^{n+1}-1}\). We present a proof of the following generalization of a Rosenthal result: if \(E\) is a closed subspace of a separable \(C(K)\) space with separable annihilator and\(S\colon E \to X\) is a continuous linear operator such that \(S^{∗}\) has nonseparable range, then there exists a subspace \(Y\) of \(E\) isomorphic to \(C([0, 1])\) such that \(S|_Y\) is an isomorphism, based on the fact.
Słowa kluczowe
Rocznik
Tom
46
Numer
2
Opis fizyczny
Daty
wydano
2006
online
2017-12-19
Twórcy
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ojs-doi-10_14708_cm_v46i2_5219
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.