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On the degree of almost strong
convergence of Fourier series

Abstract. We estimate the rate of various types of almost strong convergence of the Fourier
series of functions belonging to the spaces L? (1 < p < o) and C, by using matrix means. As
corollaries, norm and pointwise approximation of functions from Holder type classes is examined.
An almost convergence criterion is also obtained.

1. Introduction. Let X = L? (1 < p < o) [resp. X = C] be the space of all
2n-periodic measurable real-valued functions f = f(-) on the real line which
are p-integrable [resp. continuous] on [—m, w], with the usual norm |{|-||4.

Consider the Fourier series

o(f)

S[f1(x) i (ax(f)coskx +b,(f)sinkx)

and denote by S,[f] the partial sums of S[f], and by

n+m

Gmalf] = L 3 8,01

the generalized de la Vallée Poussin means of the sequence {S,[f1}.
The aim of this paper is to estimate the quantities
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[} m+n rig) 1/r
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n=

Hymlf1r(x) =

where T = (t; ,)in=0 iS an arbitrary non-negative matrix, and g, r > 0. As
a measure of these deviations we take

Z (“Z’ (g(u+oam+ pn))? )”"}"’,
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where g = g(-) is taken to be either the modulus of continuity w(—i—l, f > ,
’ X

the best approximation E (f)y of f by trigonometric polynomials of degree at

“,

. . s
most in the space X, or the function wx(_—_H, f ) . Here
X

@, f)x = sup llo.@llx

0<t<d

-

sup {u”! flo.()Pde}'? if X =17 (1<p< o),
0

O0<u<d

w,(8, f)y = < es55up|g, () i X = I,
O<u<sé

sup |, () if X=C,
_O0<u<é

with ¢, (t) = f(x+t)+f(x—t)—2f(x).

We also show how some earlier results follow from ours.

By convention, the letter M will mean either an absolute constant or
a constant depending on the parameters g, r, p, not necessarily the same at
each occurrence. We denote by T4 and T, the two triangular matrices
corresponding to T, ie. (T%,=t, if k>n and zero otherwise, and
(Ty)km = tex—n if k= n and zero otherwise. We set

[u]
T (u) = T([u]) = z tox-n for OSu<k and Tk =1.

2. Norm approximation. In this section we will investigate the first three
quantities.

In the following theorem we present the general estimate basing on the
well-known results of Dahmen [1] and Stechkin [7].

THEOREM 1. If fe X, then
Hy W[ fIx,r < Mhim s LE (f)x]1,0.1-
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Proof. The mentioned results of Dahmen and Stechkin may be written in
the form

n+m

Omal S 1=fllx SM Y (wtm+1)" Epn(fy,

pu=0
and hence our assertion follows.

The next theorem concerns a stronger quantity.

THEOREM 2. If feX (here X = C when p= o) and q(g—1)"'<p
<q (g =2), then

ar .0/ o 1,r,1 T
Hin [ f1x,r < MhEx ”[ <.+1’f>x:|T’oo+thmm|j ( +1’f>x:|r,1,o.

Proof. We only give a sketch of proof, because it is similar to that in [3]
for almost strong summability. It is clear that

1 m+n . 1/q
{-rm En 1S, LA 1(x)—f ()] }

{ 1 m+n 1 (n/(m-}n+1) n/(mj+ 1) E ) ( )D ( )d q}l/q
- h + + o (D, (t)dt| »
m+1 p=n|T 0 rfm+n+1)  n/m+1) ¥ “

and the estimates of the first and second integrals follow at once from the
following inequalities for the Dirichlet kernel D,(t) (n < u < n+m):

ID, @& <n+m+1, D,@I<@2d™ O<|d<mn).

The last integral may be treated as the Fourier coefficient of some function, and
using the Hardy-Littlewood inequality (cf. [8, (5.20 II), p. 126]),

4 o 1/q
{Iao(f)l 3 (o k(f)|q+|bk(f)|a)} < ML,

where [, = t7¢f (), f,eX with ¢ = 1/p+1/g—1 and q(g—1)"'<p<gq
(@ = 2), we obtain
q}llq

{ 1 mz+u 1 n/2 (px( )
m+1 u=0 nn/2(m+1) 2 1

M{(m+1)—p/q 5 t—l_p/ql(px(t)lpdt}l/”.
r/(m+1)

sm((2p+ 1)t)dt

Hence our assertion follows.

In the next results of this section we consider only the triangular matrices
T or T,. s
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THEOREM 3. Let {t; ,} be positive and non-decreasing with respect to n for
each k. If feX, then

T T
Hyml[f1x,7a < Mhisa? m—l: (—, ) ] +w(——,f) .
, xr fomk+ U7 ) roon k+m+1"7),

Proof. Using the Dirichlet formula we obtain

1 T n/(k+m+1) L4
Hy W[ f1x1a < - f”(o.(t)”ka,m(t)dt = E{ 5 + f } =1,+1,,

0 0 nf(k+m+1)
where
. t . t
X sin(2n+m+ 1)551n(m+ 1)5
Lk,m(t)= Z Len—
n=0

2(m+ 1)sin’t/2
As |L; () <k+m+1, we get

I n
Z’k" (k+ +1f) “’(m’fl{-

Next, by Abel’s transformation (see [5, Lemma 5.117]), we have

k
Z tenSID( 2n+m+ 1)2‘ MT,(n/t),

whence |L, ()} < Mt~ T,(n/t), and thus

T k+m+1
L<sM | tHe@IxTn/ddt <M [ o/u, /)y Tuu"du
n/(k+m+1) 1

k+m k+tm=1 p 1 T
<M Y plowp, HxTw=M ) ot 1” (ﬁf> biie—n
n=1 u=0 n= X

k+m k+m 1 n
SM}];()tk’k "u nm (“+1 f> _Nlh,%:'}l:’?+m_.|:w(j, >X}TV,O,1'
This completes the proof.
From the above theorems we can deduce some known results.

PROPOSITION 1. Let {t;,} be positive and non-decreasing with respect to n,
for each k, and let y be a positive function defined on (0, o) such that, as k — oo,

(i) kx(k) =0(1),
(i) f§*™x(w) T, (w)du = O(1) uniformly in m > 0.

Then, if w(t, f)x = o(t™*x(n/t)) as t—0+, we have
Hym[flxra=0(1) as k— o0,



Degree of almost strong convergence of Fourier series 387

uniformly in m > 0.

Proof. We note that

it T f +m+n 1 ” o f
- w ——-—-———’ N —,
o Uk Am+ ) 2kl \p )y

=o(k+m+D)yk+m+1)+ Y thkk ——— +1 (u+1’>

n=0 pu=n

By (i) the first term on the right-hand side is bounded, and the second after
changing the order of summation does not exceed

E e, < Ew | oot
) o(r/t, )yt~ dt
p=0n=0 kk l't+1 #+1 ;1 X

k+m+1 k+m+1

=5 [ tTromt xL®d=o() [ xOT(@)adr.
1

1

Hence, in view of (i), by Theorem 3 we obtain the desired relation.

Remark 1. For m = 0, this result is a norm analogue of Dikshit’s theorem

[2].
The analogue of Propositioﬁ 1 for strong means is

PROPOSITION 2. Under the assumptions of Proposition 1 with (ii) replaced by
k

(i) {xw) T (wdu = O(1) as k— oo,
1

we have
HiWw[fIxra=o0(l) as k—oo,
uniformly in m > 0, for 0 < ¢ <p,2<p< oo and with X = C when p=

Proof. Firstly, as in the previous proof, by (ii'), we obtain

k n 1 k+1
”gotk,n ,Eom (— ) = o(1) f x() T (t)dt.

p+1’
Secondly, by (i),

k m 1 m 1/p m i/p
) tk,n{ ; w”( ,f>X} = 0(1){ Z ((#+Dxu+1)P }

1 m 1/p
= 0(1){—erl Y 0(1)} = o(1),
n=0

and thus, by Theorem 2, we have our statement.
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Now, we formulate as a corollary the slightly improved result of Prem
Chandra [6], which is a special case of Theorem 1.

COROLLARY 1. Let  be a positive function defined on (0, o) such that

t~! j" Ydu=0((t)) as t—->0+,

a(t) .
with some 6(t)e[0, t). Then, if

}u’zw(u,f)xdu =0(y@®) ast->0+,

T

we have

1 k—1
- X SU1-f

A‘k v=k— Ak

= 0( ' Y(w/4)  as ko,
X

where {1,} is a monotonic non-decreasing sequence of integers such that 1, = 1,
and lk+1_}-k < 1.

Proof. Let T4 = diag(1, 1,...). Then, by Theorem 1 and Jackson’s
Theorem,

1 k—1
k v=k— Ak
k-1 1 T k+Axk—1 T
<M , =M -\ ————, .
,,go u+/1,,w(u+k+1 f>x p;k uw(u+k+1—ik f>x

Since, for small t > 0,

= H;;—}Ja)-k‘l [f]X,Tf
X

t rof, fx < M}u‘zw(u, Nxdu,

it follows from our assumptions that the considered expression does not exceed

k+Ag+1 . ( Tt M T/ Ak . T
M v—a)——-—,f) dv=— t~ w(—————, )du
i‘; v+k—4 7 Jx T n/(k+£.k+1) T/t +k— A ! b'e
M T/ Ak Ak
<Z T el Nedi=0{ | ) =00 /A,
Tk + A +1) Tk + Axc + 1)

and the corollary follows.
3. Pointwise approximation.

THEOREM 4. If fe X, then

Ll 1200 < bt w() |
X_1T1,0,0
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Proof. We have

2 17:/(n+m+1)
ol 1) —1 ) < T2 g e

0

wf(m+ 1) L4
+3 e (O)dt+ —— 1”2, ()l dt,
2n/(n+j‘m+ 1) 2( +1) n/(rr;['l-l)

from which, by partial integration, our statement follows at once.

THEOREM 5. If f€ X (here X = C whenp = ©0),q(q—1)"' <p<q (@ = 2),
then

. Ll o T.p/4 T
Hz.,..[f]T(x)<th,m,@+.[wx(.+1,f>x]r,lo+hf 3 [ ( T )}

Proof. As in the proof of Theorem 2 we have the estimate

1 nim 14 pam41 ©otm+D)
{m+1 Z 1S,Lr16)— f(x)l“} S——— | le0)ldt
0
n/(m+ 1) z
+% 5 ™! I(Dx(t)ldt-i-M{(m-{- 1)'17/‘1 j t_l-'P/ql(px(t)lpdt}l/p’
n/(n+m+1) m/m+1)

which, by partial integration, leads to the desired result.

In the following theorem we consider the triangular non-negative matrices
TA
and T,.

THEOREM 6. Let {t; ,} be positive and non-decreasing with respect to n, for
each k. If feX, then

T T
H S Mhimism-. — keme1’)
k[ S 174(x) hicmli+ m |:w"<- +1 f)X:lTV,O.I +wx(k+m+ 1 f)x

Proof. Proceeding as in the previous section, we obtain

T

Hk.m[flu(x)swx(k—;:m;f)ﬁM R XCAC

n/(k+m+1)

Further, by partial integration, the above integral does not exceed

k+m nmju k+m

2 e T(n/tyde = Z {{T(m/0)e™ 1§ |, (W)l du]7ltu+ 1)
p=1 n/(p+1)

T/ n

+ f “zflcox(u)ldu)dt} TDw,(m, Nx+ [ 7w, (e, Ny Tw/o)de.

n/(e+1) n/(k+m+ 1)
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Finally, by standard transformations, we have

. T
Hyml f1ra(x) < Wx(ma f>x
+1\’1Tk(1)vvx(7t,f)x+7t1\’1k+?+1 u”twy(n/u, )y T,(w)du
1
T
< Wx<m, f)x +MT,(Dw,(x, f)x

k+mk+m 1 T
+nM Z Z tk,k—n—w (—"'—, f)
X

n=0 u=n /,l+1 * H’+1

<~ ),

k+tm—n 1 b1
+ 2+ M Lik—n x ’ ’
2+m) n;o k.k ugo n+u+1w (H'HH'I f)x

and thus our proof is complete.

Remark 2. Note that our theorems remain true if we replace w_(d, f)y by
W, (8, f)x which arises from the definition of w, (6, f); be removing sup, or
esssup, and putting u = J.

PROPOSITION 3. Let {t,,} be positive and non-decreasing with respect to n,
for each k. Let y be a positive function defined on (0, o) such that, as k — oo,

(i) kx(k) = 0Q1),
(i) {5 x W Twu''"~ du = O(1) uniformly in m > 0.

Then if W (t, f)x = o(t™ Py (n/t)) as t >0+ (when p = 00 or X = C then
1/p = 0), we have

Hi [ fl7a(x) =0(1) as k— oo, uniformly in m = 0.

Proof. From the assumption on w,(3, f)y, by (i), we get

Wx(,:f;p f>x =o((k+m+ 1)1/Px({c+m+ 1) = o(1),

and by (i) we have

n
pLio | ,
bkt \+1 fx Ty,0,1

k k+m 1 1t k+m 1 T
=Y tgen Y — = f) = T T —,

Z k. Z <#+1 f)x ugo k(ﬂ)u+1 <ﬂ+1 f)x
k+m+1 k+m+1

<M j' TWW(r/u, flxyu rdu=o0(1) [ Ti(w)ywu'?" du.
1
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In view of Theorem 6 with Remark 2 the desired relation holds.

In case p=1 and m = 0, this is a result od Dikshit [2].
For strong means we have

PRrOPOSITION 4. Under the assumption of Proposition 3 with (ii) replaced by
(i) (% x) T, (k—wu?"1du = 0(1) as k— o,

we have )
HEw[f1ra(x) = 0(1) as k— oo,

uniformly in m =0, for 0 < q <p, 2<p < o and with X = C when p = o©

Proof. The assumption on w. (6, f)y gives
k n 1 T m 1 T 1/p
tin — W, | —, + wR )
ngo - {(u=0 l'l'+1 (M+1 f)X) (ug() ”+m+1 x(lu+1 f>X> }

> T (k— 1(n 13 Db s
\,,Zo T (k—wW— 17 +1,.f>x+0( ){m—Hugo(M )xP(u+ )} ;

whence, as before, using (i) and (ii'), by Theorem 5 with Remark 2 we have our
assertion.

Now, we present the pointwise analogue of the result of Prem Chandra [5].
COROLLARY 2. Let Y be a positive function defined on (0, o) such that

t7! ; Ywydu =0(y(t) as t—-0+,

o)
with some 6(t)e[0, t). Then, if

fu w,(u, f)xdu=0(Y(t) as t—0+,

we have

1 k—1
= Y S[10-S

k p=k— i

= O(A 'Y (m/h))  as k— oo,

where {4,} is the same as in Corollary 1.
Proof. Let T{ be as in the proof of Corollary 1; then, by Theorem 4 with
Remark 2,

k-1

1
L S0/
k

n=k—

= H;t—).k,lk_l[f]Tf(x) Z

M Ar—1 M 1 _ L
A ﬂZO ( ,f) * Z PES UG +1,f)x-
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For the first term we use the assumption on w,(d, f)y to obtain

1 Ae—1 T T _ _
El Z Wx(_"—s f) < Mﬂ';l 5 v wa(v’ f)de = O(A’k ll//(Tc/j'k))
A 40 p+l 7 /x e

Since W, (0, f)y < w,(d, f)y and
7w (t, )y < Mfu"?w,(u, f)ydu for small ¢t >0,
) :

by the assumption on ¥ we obtain

k-1 ( b f) n/fk 1
—w, | ——, <M tiw, (¢, f)xdt
pmn ut1 p+177 Jy ri(k+ 1) X

/A

=0( | W)= 00 W(n/iy).

nj(k+1)

Hence, the second term has the desired estimate and thus the corollary follows.

Remark 3. From our results the following almost convergence criterion
can be deduced analogously to [2].

Let y be a decreasing function such that ﬁ x(Wdu = 0(1) as k- oo. If
Wy (t, ) = o(tx(n/t)) as t—0+, then S[f](s) almost converges to f(x) (see
definitions in [4]).
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