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On some semilinear integro-differential equation
of parabolic type

1. Preliminaries. In applied mathematics there appear the so-called
loaded equations of various types (see e.g. [9] and the references therein).
Integro-differential equations constitute an important class of loaded equa-
tions. The following integro-differential equation

n

(11) Z uxixi(x5 t)=ut(x’ t)+K".ut(y’ [)dy9 x=(xla ---9xn)
. D

i=1

appears in thermoelasticity (see [3]-[7]), where D is a domain of the
Euclidean space R" and K is a real constant. Therefore, it is advisable to
investigate equations involving (1.1).

In this paper, we consider the first Fourier problem for a semilinear
parabolic integro-differential equation (involving (1.1)) in a Banach space.
Using the results of papers [13], [14], we establish some existence and
uniqueness theorems for the above problem. The employment of a Banach
space instead of the Euclidean space R is justified, because it enables us to
obtain various classes of equations (see Section 7).

In order to formulate the problem in question, we first introduce some
notation. Let G be a bounded domain of the Euclidean space R"*! of the
variables (x, t) = (x,, ..., x,, 1) whose boundary consists of sets E, x {0} and
E; x{T} (E, and E; being bounded domains of R"), and of a surface S
included in the strip R" x[0, T7], where T is a positive constant. We put

E =ix: (x,)eG), 0<t<T, I'=SU(E,x!0),

S, =ix:(x,)eS!), 0<t<T

Let B be a real Banach space with a norm ||-||g. The limit, continuity
and partial derivatives of functions of real variables with values in B are
understood in the strong sense. Integrals of these functions are taken in the
Bochner sense. We shall use the Banach spaces C(G, B) and C*** (G, B)
with the norms ||*|jp¢ and || -||k&”, respectively, introduced in [13] (p. 441),
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where k =0, 1, 2, 2€(0, 1) is a constant, and G denotes the closure of G.
Moreover, we introduce the Banach spaces

C*9(G, B)= {ueC(G, B): u, €C(G,B), i=1,...,n},
C*Y(G, B) = {ueC (G, B): thyx,, h €C(G, B), i,j=1,...,n}

with the norms

n

lll5e” = llulls.c+ . llux,/ls.c»

i=

n
Il = g+ X g llsc+udls6,
i,j=1

respectively. All the above functional Banach spaces and norms will be
particularly used in the case B = R. In this case we shall omit the symbol R.
We shall consider the problem

(1.2)  (Lu)(x, t)+ K (Lyu)(1)

= f(x, t, u(x, t), ue(x, 1), (Low)(®)), (x,1)eG\T,
(1.3) ulx, ) =e(x,t), (x,0el,
where u, = (U, ..., Uy ), K is a real constant,

1.4) (Lu)(x, 1) = 3 a(x, Quigy, (x, )=, (x, 1)
=1
and
(1.5) Low) (@) = [g(y, Yu,(y, )dy.
E,

In the above problem, the functions u, f and ¢ take values in B, whereas L is
a parabolic operator with real-valued coefficients and g is a real-valued
function as well. We shall investigate the existence and uniqueness of a
solution of problem (1.2), (1.3) in the space C*V(G, B).

2. Elimination of the integral from equation (1.2). In this section we
eliminate the function L,u from equation (1.2). Consequently, we obtain a
new form of equation (1.2) which is more convenient for our investigation.

We introduce the following assumptions.

(2I) The surface S is of class C?*® N C2~9 (see [11], p. 838), where
«e(0, 1) is a constant, =
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(2II) The coefficients a;; (a; =a;) belong to C® (G). Moreover,
a; €C19(S) (see [11], p. 838) and there exist derivatives Bjx; (X, t) con-
tinuous in G and satisfying in G the uniform Holder condition of exponent
/2 in t.

(2.III) The operator L is uniformly parabolic in G, i.e.

n
Y ay(x, 0rr = Aglrl?,  (x,0)€G, r=(ry, ..., 1) €R",
ij=1

"~ A, being a positive constant.

(2IV) The function g belongs to C*9(G) and g(x, t), s, (x, 1) (i
=1, ..., n) satisfy in G the uniform Holder condition of exponent a/2 in t.
Moreover, if K # 0, then

fg,ndy# K™, te[0, T] (V).

E

(2.V) The function f: G xB"*? > B is continuous (in the strong sense)
and

”f(x> t,u,p, ql)—f(xs t,u, p, ‘12)”3 < Al ”ql _‘12”3

for any (x, t)€G, u, q,, g, €B, peB", where A, is a positive constant less
than

Ay = [sup {lgo @)l [ lg(y. Dldy: te[0, T1}]
E
and
@D g0(® = [1-K [g(y, 1ydy]™".

E;

Now let us denote by z(y, ) =(z,(y, 1), ..., z,(y, 1)) the unit exterior
normal vector at y €S, and introduce the following notation:

22 (Liw@®) =go® Y [[a;(, Du, (v, z;(, g (y, )dy

Lj=1 §

_E‘, U, (v, t)—ég—(a.-,-(y, Ng(y, )dy],

J

(") It follows from assumptions (2IV) and (2I) that g€C®(G).
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(23) (L, (u, )(1) = (Lyw)(0)+ (g5 (v, D(Fy (u, v))(v, 1)dy,
E,

(24) (Fy(u, 0))(x, 1) = f(x, 1, u(x, 1), u.(x, 1), v(1)),

(2.5) gi(x, 1) = —go(H)g(x, 1).

We shall use the Banach space C([0, T], B) consisting of all continuous
functions v: [0, T] = B and provided with norm

[Ivllg 10,1 = sup No(e)lg: tel0, TT}.
Now let us consider the equation
(2.6) v =L, (u, v).

Assumptions (2.I), (2.II), (2.IV), (2.V), relations (2.1)+2.5) and Lemma 6.1
(Section 6) imply that

L,(u,-): C([0, T], B —»C(0, T], B)
for any ueC*?(G, B) and .
L (u, v1) — Ly (4, v2)llg 0,1 < Asllvy —vallpgo,m
for any ueC(G, B) and v,, v, €C([0, T], B), where
@.7) Ay = A, 451 < 1.

Hence, by the Banach fixed point theorem, for any ueC®*?(G, B) there
exists a unique solution veC([0, T7], B) of equation (2.6). This enables us to
define an operator

L3: C“’O)(Ga B) _)C([()’ T]a B)
setting Lyu = v.

Treorem 2.1. Let assumptions (21)H2.V) be satisfied. Then a function
ueC>1(G, B) is a solution of equation (1.2) if and only if it is a solution of the
equation

(2.8) (Lu)(x, ) =(Fu)(x, 1), (x,1) EG\F,
where
. (2.9) (Fau)(x, 1) = =K (Lyu)()+(Fy (u, Lyu)(x, t).

Proof. Let ueC*V(G, B) be a solution of equation (1.2). Then, multi-
plying (1.2) by g(x, t) and integrating with respect to x over E, we obtain,
by (1.4), (1.5), (2.1)H2.5), the equality

Lou = L,(u, Lou).

Hence it follows from the definition of L; that Lyu = L;u. Consequently,
(1.2), (24) and (2.9) imply that u satisfies (2.8).
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Now let ueC'*V (G, B) be a solution of equation (2.8). Multiplying (2.8)
by g(x, t) and integrating with respect to x over E,, we obtain by (1.4), (1.5),
(2.2) and (2.9) the equality

[90 (017" (Ly ) () —(Lou) (1)
= —K(Lyu)(1) [ g(x, )dx+ [ g(x, )(F, (u, Lyu))(x, t)dx.

E, Eq

Hence, using (2.3), (2.5) and the equality
K ’ g(X, t)dx = 1_[90(1)]_1,

E,

we have
[90 (01~ ' (L (u, Lyw)()—(Low) (1) = [go (0]~ (L3 w) (1) — (L3 ) (2).

In virtue of Lyu = L,(u, Lyu) the last equality yields Lyu = Lyu. Conse-
quently, (2.8), (2.9) and (24) imply that u satisfies (1.2). This completes the
proof.

3. Existence and uniqueness of a solution of problem (1.2), (1.3). We use
the notation and assumptions of Sections 1 and 2. Moreover, we need the
following assumptions.

(3.1) There are constants A,, A5 > 0 such that

Lf (x, 1, u, p, @llp < As+ As (lullp +Iplls) + A, llglls
for any (x, 1)€G, u, qeB and p =(p,, ..., p,) €B”", where

Iplls = Y. lIpils
i=1

and A, is the constant introduced in assumption (2.V).

(3.IT) There is a constant Ag > 0 and for any b > e (e being the Euler’s
number) there is a constant 4, = 4,(b) > 0 such that

IS (P, u, p, = f(P', o', P, qllg
< A;[d(P, P)J*+ Ae(Inby [|lu'—ullg +11p"— plls]
for any P=(x,1), P'=(x,t)€G, gqeB and u, u' €B, p, p’ €B" such that
lullg, llu'lls, |lPlls, IPlls < b,
where r€(0, (1-a)(3+a) ") is a constant and
d(P, P)) = (Ix— x>+t —t])"/2.
(3.1II) For the function ¢: I' = B there exists an extension

®eCU*P(G, By~ C?*2(G, B),
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where fela, 1) is a constant. For each such a function @ we have
3.1 (Lo)(x, 0) = (F, ®)(x, 0), x€E, (%),
where OE, is the boundary of E,.

THeoreM 3.1. If assumptions (21)}2.V), (3.I)-(3.III) are satisfied, then
problem (1.2), (1.3) has a unique solution u in the set

C1*9(G, By~ C*1(G, B).
Moreover,
ueCl*P(G, By~ C?*9(G, B).

Proof. We use the Bielecki’s norms introduced in [13] (p. 455, 456) and
the norms

[1ollg,c0, 71,0 = SUP e ™ llv(@llp: 0<t < T}

for veC([0, T], B) and

”U”g,)[o,r],a = ”v“B,[O,T],a
+sup jexp[—amax(t, t)]lv(O)—v(EWplt—t177, ¢, t' €[0, T]}

for veC” ([0, T], B). Taking into consideration relations (2.9), (2.4), assump-
tions (2.V), (3.1), (3.I1), and Lemma 6.3, one can prove the following asser-
tions:

(a) FZ: C(I,O)(Gs B) —)C(G—v B)a F2~: C(l+a)(G—, B) _)C(a)(G—, B),
(b) there are constants N;, N, > 0 such that

\Fyullgg. < Ny+ Nl

for any a >0, ueC*%(G, B);
(c) for any b > e there is a constant N;(b) > 0 such that

WFyu; —Fyusllpga < N3(B)d lluy —uall§d, a>0
for any u,, u, eC*9(G, B) such that
lullgdh < b, i=1,2;
(d) for hany b > e there is a constant N,(b) > 0 such that
IF2ullfs < Na() [1+|lull5é ]
for any ueC"*?(G, B) such that |ju||j&® < b.

(3 Concerning (Lg)(x, 0), we use Remark 1.1 of [11] with L, replaced by B. Since (2.9),
(24) and Lemma 6.3 (iv) imply that (F, ®)(x, 0) is independent of & (& being any extension of
@), equality (3.1) is correct.
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It follows from the above assertions that assumptions of Theorem 3.1
imply assumptions of Theorem 4.1 of [13] in relation to problem (2.8), (1.3).
Therefore, the assertion of Theorem 2.1 holds true for problem (2.8), (1.3).
According to Theorem 2.1 this completes the proof.

4. Problem (1.2), (1.3) in a linear case. We consider problem (1.2), (1.3) in
the case

@1 f(x, tou,p,q) =Y bi(x, )pitclx, utcolx, ) g+ folx, t).
i=1

We retain assumptions (2I}«2.IV), whereas assumptions (2.V), (3.I), (3.1
result from the following one:

@) b;, ¢, co€C?(G), foeC@(G, B) and |co(x, t)] < 44, (x, t) €G, where
A, is the constant introduced in assumption (2.V).

Making use of (2I+2.V), (4.1), (4I), one can find that for any
u eC19(G, B) the unique solution of equation (2.6) is given by the formula

42 (Lyw() =g, (L @O+ [, D[ fo . 1)

E;

+_Z bi(y’ t)uy,-(ys t)+c(y, t)u(y, T)] dy}>

i=1
where
g:(0) =[1=1Tg.(y, Neoly, Ndy]™".
E
THeoreM 4.1. If assumptions (2.1}2.1V), (4.1) and (3.111) are satisfied, then

the assertion of Theorem 3.1 is true in case (4.1). Moreover, there are constants
ag =1, Ag, Ag > 0 such that

@3) DS Aga Tl folln.at QIR+ 2001522 > ao,
“9 B2 < Ao [l ollgs +I0lIZE],

where ¥ =(1—B)(3+p) 1.

Proof. The first assertion of the above theorem is an immediate
consequence of Theorem 3.1. To prove estimates (4.3), (44) notice that
operator F, defined by (2.9) has now the following form

4.5 (Fau)(x, 1) = [co(x, n—11(L3u) (1) + Z bi(x, D)uy(x, t)

i=1
\

+c(x, Hu(x, )+ fo(x, 1),
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where L3 and L, are defined by (4.2) and (2.2), respectively. According to
Theorem 2.1, the function u is a solution of problem (2.9), (1.3) and
consequently, by Theorem 3.2 of [13], there are constants a; > 1, Ng >0
such that

4.6)  |lullgé2< Nsa "[lIF ullgca+llolfdL] +llolEés  a=a;.
Relations (4.5), (4.2), (2.2) and Lemma 6.1 imply that

4.7) IF2ulls,6,0 < Nollulls.%+ 1 follgals a0,

N¢ > 0 being a constant. It follows from (4.6), (4.7) that there exist constants
ao = a;, Ag > 0 such that (4.3) holds true. Using (4.3) with f =« and a = a,
we obtain

(1+2) (2,1 (1+a)
(4.8) lulls.c™ < N7 [l folls.c +llollsc+ lollag ],

N; > 0 being a constant. Relations (4.5), (4.2), (2.2), (4.8) and Lemma 6.2 yield
the inequality

IF 2 ullis < N [l folls,c +ligllng +lolls.c 1,
Ng > 0 being a constant. Hence, by Theorem 2.3 of [12] applied to problem
(2.8), (1.3), we obtain (4.4). This completes the proof.

It follows from the above proof that each of the constants a,, Ag, A is
independent of f, and ¢. In the scalar case (i.e. B = R), the estimate (4.4) is
the same as that one for solution of the first Fourier problem for the linear
parabolic equation (see Theorem 3.6 of [8]).

5. An application of measures of noncompactness. In this section we
prove an existence theorem for problem (1.2), (1.3) with the aid of Theorem
2.1 of [14]. For this purpose we use the Hausdorff measures of noncompact-
ness u, M@, M§’ and M, in the Banach spaces

B, C(G, B), C([0, T], B), C"9(G, B)

with respect to the norms

I 1ls, 1l '“B,G’,a, i '”B,[O,T],aa I ||§3160)a’

respectively (?). We recall the definition of u. For any bounded set B, — B, we
define u(By) as the greatest lower bound of all numbers s > 0 such that B,
can be covered by a finite number of balls of radius s. The remaining
measures of noncompactness are defined likewise.

We retain assumptions (2.1}+2.V), (3.I) and (3.ITI), whereas instead of
(3.IT) we introduce the following ones.

(®) Concerning measures of noncompactness see, for instance, monograph [1].
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(5.) For any b > 0, there is a constant A,,(b) > 0 such that
Lf (P, u, p, @)= f (P, o, ', 9lls )
< Ayo(b) i[d(P, P)P +[lu~ulls+Ilp—plls]"*)
for any P, P'eG and (u, p, g), (u', p', g €B"*? such that
Heullg, Hlw'lls, Niplle, Hplls < b
where ye(0, a) is a constant.

(5.II) There is a constant A,, > 0 such that for any (x, t)€G, geB and
any bounded sets U < B, P=P, x ... xP, = B" we have

Il(f(X, t’ U1 P’ q)) < All [M(U)"' Z M(Pl)]’
i=1

where f(x,t, U, P,q) = {f(x,t,u, p,q): ueU, peP}.
Note that assumptions (2.V) and (5.1I) imply in the standard manner the
following condition.

(5.1I1) For any (x, t)eG and any bounded sets

U,QcB, P=P;x...xP,cB"
we have

lu(f(x9 t, U9 P’ Q)) < All [M(U)+Zl “(Pl)]+Al M(Q)

THeoREM 5.1. If assumptions (21)+2.V), (3.I), (3.1I1), (5.) and (5.11) are
satisfied, then there exists a solution
: ueCl*P(G, B nCP*V (G, B)
of problem (1.2), (1.3).

Proof. Taking into consideration relations (2.9), (2.4), assumptions (2.V),
(3.I), (5.I), condition (5.III), and Lemma 6.4, one can obtain the following
assertions for F,:

(@) Fy: C29(G, B)—~C(G, B), F,: C**, B)>C?”(G, B) and as-
sertion (b) from the proof of Theorem 3.1;

(B) for any b > O there is a constant Ng(b) > 0 such that

IF2uy — Fyusllp < No(b) [llus —uallpe 17

for any u,, u, eC*9(G, B) such that ||ullf@<b, i=1,2;
(y) for any b > 0 there is a constant N;o(b) > 0 such that
IF; ull§ls < Nyo(b)[1+]ullgé™]
for any ueC*** (G, B) such that |jul|§2*® < b;

14 — Commentationes Math, 28.2
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©) there is a constant N,;; >0 such that for any bounded set
U < CY*9(G, B) we have
M@(F,U) < Ny ME(U).
It follows from the above assertions that assumptions of Theorem 5.1
imply assumptions of Theorem 2.1 of [14] in relation to problem (2.8), (1.3).

Therefore, the assertion of Theorem 5.1 holds true for problem (2.8), (1.3).
According to Theorem 2.1 this completes the proof.

6. Lemmas. In this section we state and prove lemmas which have been
used in the previous sections of this paper. We begin with two lemmas
concerning the functions

v () = (u@, Op, (v, )dy, v(t) = {u(y, ) p2(y, t)dy.

E, S
Lemma 6.1. Let SeC?, ueC(G, B) and p,, p, €C(G). Then
v, €C([0, T, B),  llvillgjo.1he < Ar2llUllsgallpills, i=1,2

for any a€eR, where Ay, >0 is a constant.

Lemma 6.2. We assume that SeC?, ueC%(G, B), p, p,€C(G) and
pi(x, t) satisfy the uniform Holder condition of exponent a/2 in t. Then

b eC([0, T), B),  ol§fma < Asslilifo.n =12
for any a€R, where A 3 >0 is a constant depending only on S, p, and p,.
Proofs. The assertions of the lemmas concerning the function v; can be

proved in the standard manner with the aid of the formula

v —v ()= [ uly,)p (v, dy
E\Eg

+ " [u(ya t)pl(y’ t)—u(y’ S)pl(ys S)]dy

E;nEg

+ [ u@, 9)pi(y,s)dy

and Lemma 3 of [107(%).
To prove the assertions of the lemmas concerning the function v, we
divide the surface S into a finite number k of parts

S =iy, t)eS: (i-1)d<t<id!, S=Th,i=1,.., k.

(*) Note that Lemma 3 of [10] holds true under assumption SeC'™.
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Under sufﬁcient.l.y large k each surface S’ can be divided into a finite number
j; of surfaces S (j=1, ..., j;) represented by equations of the form
Yeij = hij(qu 1), frij eDy;, tel(i—1)é,id],
where
h;eCA T2 (D; x[(i—1) 8, id]).
For any t€[(i—1)6, id] we have
Ji Ji

Ul(t)‘—‘ Z ‘ u(y’ t)pZ(ya t)dy”“ z ‘ wl](yru t)dyrU

j=1sii j=1D;;
where S = |x: (x, t)€SY}. Hence it follows that
Ji

Uz(t)—Uz(S) Z ‘ [Wu(yr ’l) le(yrU S)]dyrl

j= IDU

for any ¢, se[(i—1) 4, i6]. The further proceeding is obvious. Thus the proofs
of Lemmas 6.1 and 6.2 are completed.

LemMma 6.3. Let assumptions (2.11), (2.1V), (2.V), (3.I) and (3.11) be satisfied
and suppose Se€C. Then the following assertions hold.

(i) Ly: C*9(G, B)—>C([0, T], B) and for any ueC*9(G, B) and
a =0 we have

”Lsunn,[o,na Arg+Ays |lullf Gg

where Ay,, Ays are positive constants and Ls is the operator defined in
Section 2.

(i) For any b > e there is a constant A,q(b) > O such that
L3 uy — L3 tsllp 0,110 < A16(B)a" lluy —wo)l5dh,  a>1

Jor any u;, u, eCHO(G, B) such that |lu||gQ, <b, i=1,2, where r is the
constant introduced in assumption (3.I).

(iii) Ly: CU*9(G, B) >C“?([0, T], B) and for any b >e there is a
constant A, (b) > 0 such that

L ull§iB 1 < Ay, B) [1+]Jullg & ®]
for any ueCY*9(G, B) such that ”u”(l+¢) <b.

(iv) If uy, u, eCH9(G, B) and u, = u, on T, then
(L3 uy)(0) = (L3 u;)(0)

Proof. The first part of (i) follows from the definition of L, Section 2.
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Using (2.1)42.5), (3.1) and Lemma 6.1, we find that

IILy(u, Lywllg 0,116 S N12+Ny3 Nlulld % + A3 lILs ullp 10,71,

where N,,, N;; > 0 are constants independent of a. Hence, in view of (2.7)
and

(61) L3 u= LZ (us L3 u)’

we obtain the inequality in (i).
To prove (i) note that

“ui (xs t)”B, ”uixj(xa I)”B < beaT9 i= 1’ 2’ (X, t)EG

Hence, taking into account (2.1)+2.5), (2.7), (2.V), (3.1I), Lemma 6.1 with u
= u;, we obtain (ii).

In order to prove (iii) take any b >e and ueC"*?(G, B) such that
lullg&® < b. It follows from (2.3) and (6.1) that

(6.2) v() = (Liw)(®O+ [ g1y, )(F1 (u, )y, Ddy,

E;

where v = Lyu. Now, as in the proofs of Lemmas 6.1 and 6.2, we use the
formula

(63)  v(®)—v(s) = [(Ly )(O)~(Ly u) (5)]+ 0105 0(F: (6 0) 0, D+
Et S

+ r“E [91(Ya t)(Fl (, v))(y, t)
o —g1(y, 9(F1 (u, )y, 5)] dy+

+ &E [—g:(, 91(F (, v))(y, )dy = I, + 1, +15+]1,.
E\E;

Lemma 6.2 yields the estimate
(6.4) Iills < Nyglt—s?{lullgd®,

N, > 0 being a constant. Taking into account Lemma 3 of [10], assumption
(3.J) and assertion (i), we find that

(6.5) ”IJ”B < Il_sl [N15+N16||u||§,1"(;°)], j = 2’ 4’
Nis and N,¢ being positive constants. To estimate I; we use the formula

66 Iy= f (910, 0=g:(, 9F:1(u, D)y, ydy

Et nEg

+ ‘ g1 (v, )[(F1 (w, 0)(y, —(Fy (u, v)) (v, )| dy = I3, +15,.

E¢nEg
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Assumptions (2.IV), (2.V), (3.1), (3.II) and assertion (i) imply that

(67 Maills < 16=s2 [Ny + Nos lullg],
(6.8) I32ll < le=s|%2 N1g (b) [1+[ulld T+ A llo(©) — v (9lla,

where N,,, N;5 and N,4(b) are positive constants. Combining relations
(6.2)16.8) and assertion (i), we obtain assertion (iii).

Now take any ueC?(G, B) and t€[0, T]. Taking into consideration
the definitions of the operators L, and L;, we conclude that each of the
numbers (L, u)(t) and (Lyu)(t) depends only on the functions u(-, r) and
u,(-, t). Hence assertion (iv) follows, which completes the proof.

Lemma 64. Let assumptions (2.II), (21IV), (2.V), (3.1), (5.0), (5.II) be
satisfied and suppose S €CY. Then the following assertions hold.

(i) Assertions (i) and (iv) of Lemma 6.3.

(ii) For any b > 0 there is a constant A,5(b) > 0 such that

ILy uy — Ly sl o,y < Ars (b) [llug — oI5

for any uy, u, eC*9(G, B) such that |u||$P<b, i=1,2.
(iii) Ly: C1*9(G, B) > C¥?([0, T, B) and for any b >0 there is a
constant Ao(b) > 0 such that

Ly ull$ 7y < Ayo (b) [1+Julifid ]

for any ueCU*9(G, B) such that |lullg&® <b.
(iv) There is a constant Ao >0 such that for any bounded set
U c C4*9(G, B) we have

M@ (L3 U) < A2o MPp(U), a>0.

Proof. Assertion (i) follows from Lemma 6.3. The proof of assertions
(i) and (iii) is similar to that of assertions (i) and (iii) of Lemma 6.3,
respectively.

To prove (iv) write

(6.9) (Law)(®) = [g1(y, O(Fy (u, Lyw)(y, )dy, u€eU.

E;

Using (5.IIHI), (24) and the main properties of Hausdorff’s measures of
noncompactness, and proceeding like in [14] (p. 619, 620), we obtain
(6.10) M (Ly U) < Ny MO (U)+ 43 MY (L3 U),

where A; is defined by (2.7), N,o > 0 is a constant and
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(6.11) LU= {Lu: ueU).

We also have
(6.12) M§ (L, U) < N, M (U),

N,; > 0 being a constant. It follows from (6.2) and (6.9) that
(6.13) Lyu=Lyu+L,u, uelU.

Relations (6.10)H6.13) yield the inequality
M$ (L3 U) < (Npo+ Nay) Mo (U) + 43 M (L3 U),

which implies assertion (iv). This completes the proof.

7. Final remarks. The employment of a Banach space B instead of the
Euclidean space R enables us to obtain various classes of equations with
parameter. Take, for instance, B = C[a, b]. Then problem (1.2), (1.3) has the
form

n

(7.1 X ay(x, Qug(x, 1, ) —u(x, t,8) +K [g(y, Du(y, t, s)dy

ij=1 E

=F(x, t,s,u(x, t,s), uc(x, t,5), { gy, Hu,(y, t, s)dy),

E;
(x, t)eG\TI,
(7.2) ulx, t,s)=o(x,t,s), (x,1)erl,

where s€[a, b] is a parameter. For a solution u of the above problem we
have

(7.3)  ulx,t,0), ug(x,t,°), ux'.xj(x, t,*), u(x,t,)eCla, b]

for any (x, t) €G, which implies the continuity of functions (7.3), uniform with
respect to parameter s. Taking B as a Banach space of differentiable
functions, we obtain the differentiability of functions (7.3) with respect to
parameter s for any solution u of problem (7.1), (7.2).

Note that problem (7.1), (7.2) involves certain random case. Namely, let
s = w e, where (2, #, P) is a complete probability space. Then B may be
taken as the Banach space consisting of all random variables 1: Q — R with
finite norm

s = [ (|4 (@) P(dw)]"? (qe[1, ) being a constant)
0
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or

IAllp = ess sgp [4 ().

In [2] there has been considered problem similar to (7.1), (7.2) in the
case where s is a parameter with values in a Banach space. Various results
concerning boundary-value problems for diffrential equations with parameter
can be found in references of [2].

Now we give an additional comment concerning assumptions (2.V) and
(3.I1I). It is clear that the restriction on the constant A, > 0 in (2.V) may be
replaced by the appropriate restriction on the constant K. Namely, under
arbitrary A, > 0 the condition A4, > A4, is satisfied for sufficiently large
|K]|.

The right-hand side of (3.1) depends on (L3 ®)(0). The value of the last
expression is uniquely determined by ¢. However, it is possible to determine
effectively the above value if a formula for operator L; is known (see (4.2)).
Now we give two nonlinear cases of equation (1.2) where (L; #)(0) can be
effectively determined. Let the function fin (1.2) be independent of L,u. Then
operator L5 is defined by the formula

(L3 u)(t) =(L1 u)(f)+ fgl(ya t)f(ya t, U(J’» t)’ uy(ys t))dy

E
Now let the function f in (1.2) satisfy the condition
f(x,0,u,p,q =0, xeEy u,qeB, peB".

Then we have (L;u)(0) = (L; u)(0), which implies the following formula for
(3.1

(Lo)(x, 0) = —K(L, ¢)(0), x€0E,.

Finally, one can extend the results of this paper to the general cases
which have been considered in papers [13], [14]. Namely, the function f in
(1.2) can be replaced by an operator, and the single equation can be replaced
by a system of equations (finite or infinite). However, for simplicity of
considerations we have not investigated the above general cases.

References

[1] J. Banas$ and K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel
Dekker, New York 1980.

[2] A.V.Borodin, On Some Estimate for an Equation with Partial Derivatives of the Second
Order and Its Application (in Russian), Differ. Uravn. 14 (1978), 12-21.



386

(3]
[4]
[5)

6]
(7]
18]
[9]

[10]
[11]
[12]
[13]

[14]

H. Ugowski

W. A. Day, A Comment on Approximation to the Temperature in Dynamic Linear
Thermoelasticity, Arch. Rational Mech. Anal. 85 (1984), 237-250.

—, On the Failure of the Maximum Principle in Coupled Thermoelasticity, ibidem 86
(1984), 1-12.

—, Approximation to the Temperature in a Heated Thermoelastic Fluid, Matematika 31
(1984), 31-48.

—, Initial Sensivity to the Boundary in Coupled Thermoelasticity, Arch. Rational Mech.
Anal. 87 (1985), 253-266.

—, Positive Temperatures and a Positive Kernel in Coupled Thermoelasticity, ibidem
90 (1985), 313-323. ’

A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, New York
1964.

A. M. Nahushev, Loaded Equations and Their Applications (in Russian), Differ. Uravn.
19 (1983), 86-94.

H. Ugowski, On Integro-differential Equations of Parabolic and Elliptic Type, Ann.
Polon. Math. 22 (1970), 255-275.

—, On the First Fourier Problem for Random Parabolic Equations of the Second Order,
Demonstratio Math. 14 (1981), 835-864.

—, An Application of Bernstein Polynomials in Solving the First Fourier Problem for
Parabolic Equations in a Banach Space, ibidem 15 (1982), 1007-1036.

—, Some Approximation and Estimate Theorems and Their Application to the Theory of
Parabolic Equations in a Banach Space, ibidem 17 (1984), 439-472.

—, An Application of Measures of Noncompactness to the Theory of Parabolic Equations
in a Banach Space, ibidem 17 (1984), 609-632.



