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On some semilinear integro-differential equation 
of parabolic type

1. Preliminaries. In applied mathematics there appear the so-called 
loaded equations of various types (see e.g. [9] and the references therein). 
Integro-differential equations constitute an important class of loaded equa­
tions. The following integro-differential equation

П
(1.1) £  ux.x.(x, t) = ut{x, t) + K [ut(y, t)dy, x = (xl5 . . . ,  x„)

i=  1 D

appears in thermoelasticity (see [3]-[7]), where D is a domain of the 
Euclidean space Rn and К is a real constant. Therefore, it is advisable to 
investigate equations involving (1.1).

In this paper, we consider the first Fourier problem for a semilinear 
parabolic integro-differential equation (involving (1.1)) in a Banach space. 
Using the results of papers [13], [14], we establish some existence and 
uniqueness theorems for the above problem. The employment of a Banach 
space instead of the Euclidean space R is justified, because it enables us to 
obtain various classes of equations (see Section 7).

In order to formulate the problem in question, we first introduce some 
notation. Let G be a bounded domain of the Euclidean space Rn + 1 of the 
variables (x, t) =(xy, ..., x„, t) whose boundary consists of sets E0 x (0} and 
ET x { T } (E0 and ET being bounded domains of jR"), and of a surface S 
included in the strip Rn x [0, T], where T is a positive constant. We put

Et = \x: (x, t)eG) , 0 < t  < T, Г = S и  (E0 x {0]),

St =  |x: (x, t) eS], O ^ t ^ T .
Let В be a real Banach space with a norm ||-||fi. The limit, continuity 

and partial derivatives of functions of real variables with values in В are 
understood in the strong sense. Integrals of these functions are taken in the 
Bochner sense We shall use the Banach spaces C(G, В) and C(k+a)(G, B) 
with the norms IHIb.g and IHIe^00, respectively, introduced in [13] (p. 441),
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where к = 0, 1, 2, а е(0, 1) is a constant, and G denotes the closure of G. 
Moreover, we introduce the Banach spaces

C(U0)(G, B) = {ueC(G, B): ux.eC(G, B), i = l , . . . , n } ,

C<2,1)(G, B) = {u eC(1,0)(G, B): ux.x., ut eC(G, B), i , j  = 1 ,... ,  n} 

with the norms

IMIfi.Ĝ  — HMIU,G + Z llM*,-llB,G>
t= 1

IMI&1* = I|m|ISg)+ Z IK -Jko + lk lk c ’
ij= 1

respectively. All the above functional Banach spaces and norms will be 
particularly used in the case В = R. In this case we shall omit the symbol R. 

We shall consider the problem

(1.2) (Lu)(x, t) +K{L0u)(t)

= /(x , t, u{x, t), ux(x, 0, (Lou)(0), (x, t )eG \r ,

(1.3) u{x, t) = (p(x, t), (x ,t)eT ,

where ux — (uXl, ..., mX/j), К is a real constant,

П
(1.4) (Lu)(x, t) = £  ay(x, t)ux.Xj(x, t ) - u t(x, t)

ij~ 1
and

(1.5) (L0u)(t) = f 0(y, t)dy.
Et

In the above problem, the functions u, f  and q> take values in B, whereas L is 
a parabolic operator with real-valued coefficients and g is a real-valued 
function as well. We shall investigate the existence and uniqueness of a 
solution of problem (1.2), (1.3) in the space C(2,1)(G, В).

2. Elimination of the integral from equation (1.2). In this section we 
eliminate the function L0u from equation (1.2). Consequently, we obtain a 
new form of equation (1.2) which is more convenient for our investigation. 

We introduce the following assumptions.
(2.1) The surface S is of class C(2+a) n C (2_0) (see [11], p. 838), where 

ае(0, 1) is a constant.
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(2.II) The coefficients а1} (au = ajf) belong to C(at) (G). Moreover, 
ai} eC(1-0)(S) (see [11], p. 838) and there exist derivatives aijXj(x, t) con­
tinuous in G and satisfying in G the uniform Holder condition of exponent 
a/2 in t.

(2.III) The operator L is uniformly parabolic in G, i.e.
П

£  au {x, A0\r\2, (x,t)eG, r = (rl5
u= i

A0 being a positive constant.

(2.IV) The function g belongs to C(1,0)(G) and g(x, t), gx.(x, t) (i 
=  1, ..., ri) satisfy in G the uniform Holder condition of exponent a/2 in t .  

Moreover, if К Ф 0, then

f g(y,t)dy Ф K ~ \  te [0 , Г] C1).
Et

(2.V) The function / :  G x B n+2 -*B is continuous (in the strong sense) 
and

IIf ( x ,  t, u, p, q j - f i x ,  t, u, p, q2)\\B ^  A x \\qx- q 2\\B

for any (x, t)eG, u, qx, q2^B, p eB n, where A x is a positive constant less 
than

A2 = [sup{M 0l ji\g(y,t)\dy: t e[0, T ]}] _ 1

(2.1) g0{t) = [ 1 - K  \g{y, t)dy] \
Et

Now let us denote by z(y, t) = (zx (y, t), ..., z„(y, t)) the unit exterior 
normal vector at yeSf and introduce the following notation:

Л
(2.2) (Li и) (t) = g0 (г) X [ J аи (У’ 0 (У> 0 z j  (У>0д(У, 0 ày

i , j -  1 St

~ J‘ Щ.(у, t ) j - ( a u (y, t)g{y, f))dy],
£( У j

(*) It follows from assumptions (2.IV) and (2.1) that g -e C w (G).
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(2.3) ( L 2 ( u , v)){t) = (L1u)(t) + Tдг{у, Г)(7\(и, ü))(y, t)dy,
Et

(2.4) (Fx (и, v))(x, t) = f ( x ,  t, u{x, t), ux{x, t), v{t)),

(2.5) gt (x, t) = - g 0(t)g(x, t).

We shall use the Banach space С ([0, 7Ц, В) consisting of all continuous 
functions v: [0, T] -+B and provided with norm

IMUfo.n = sup ÎINOIb?: t e l 0, T]].

Now let us consider the equation

(2.6) v  = L2(u, v).

Assumptions (2.1), (2.II), (2.IV), (2.V), relations (2.1)-(2.5) and Lemma 6.1 
(Section 6) imply that

L 2 ( u , •): C([0, T], B) ->C([0, T I B )

for any ueC (1,0)(G, B) and

| | L 2(m , V i)  —  L 2 ( u ,  У2)11в ,[о, г ] ^  l!y i ~ v 2Ï\b ,i o , t ]

for any ueC (1,0)(G, В) and i?l5 i;2eC([0, T], B), where

(2.7) A3 = A 1A2 1 < 1 .

Hence, by the Banach fixed point theorem, for any ueC (1,0)(G, B) there 
exists a unique solution ueC([0, T], B) of equation (2.6). This enables us to 
define an operator

L3: C(1,0)(G, B) -*C([0, T],B)

setting L3u = v.

T h e o r e m  2.1. Let assumptions (2.I)-(2.V) be satisfied. Then a function 
ueC i2’i](G, B) is a solution of equation (1.2) if and only if it is a solution of the 
equation

(2.8) (Lu){x, t) = (F2 u ) ( x , t), (x , t ) e G \ r ,

where

(2.9) (F2u)(x , t) = —K(L3 u)(t) + (Fl (u, L3u))(x, t).

Proof. Let ueC i2,1)(G, B) be a solution of equation (1.2). Then, multi­
plying (1.2) by q(x, t) and integrating with respect to x over E. we obtain, 
by (1.4), (1.5), (2.1H2.5), the equality

L0u =  L2(u, L0u).

Hence it follows from the definition of L3 that L0u = L3 u. Consequently,
(1.2), (2.4) and (2.9) imply that и satisfies (2.8).
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Now let neC (2,1)(G, В) be a solution of equation (2.8). Multiplying (2.8) 
by g(x, t) and integrating with respect to x over Et, we obtain by (1.4), (1.5),
(2.2) and (2.9) the equality

u)(t)-(L0u)(t)

= - K(L3u)(t) f g(x, t)dx+ f g{x, ^ (F ^u , L3u))(x, t)dx.
Et Et

Hence, using (2.3), (2.5) and the equality

K j 'g (x, t)dx = l-[0 o (r)]_1,
E,

we have

[0о(О]_1(М и, L3 u))(t)-(L0u)(t) = [0o(t)]_1(L3M)(r)-(b3w)(O-

In virtue of L3u = L2(u, L3u) the last equality yields L3u — L0u. Conse­
quently, (2.8), (2.9) and (2.4) imply that и satisfies (1.2). This completes the 
proof.

3. Existence and uniqueness of a solution of problem (1.2), (1.3). We use 
the notation and assumptions of Sections 1 and 2. Moreover, we need the 
following assumptions.

(3.1) There are constants A4, As > 0 such that

I I / ( X ,  t, u, p, q)\\B ^  A4. + A5(\\u\\b + \\p\\b) + A 1 \\q\\B 

for any (x, f)eG, u, qeB  and p = (pl , ..., p„)eBn, where

IIpIIb = Z  IIa-IIb
i = 1

and A1 is the constant introduced in assumption (2.V).

(3.11) There is a constant A6 > 0 and for any b > e (e being the Euler’s 
number) there is a constant A7 = A7(b) > 0 such that

\\f(P, u, p, q ) - f ( P \  u', p\ q)\\B

^  A7 [d(P, P')]“ + A6 (In b)r C||u' -u\\B + W  -  p||B]

for any P = (x, t), P' — (x', f')eG, qeB  and u, u' e B, p, p 'eBn such that

INI*, IMIв, IIpIIb, IIp 'IIb ^  b,
where r g(0, (1 — a)(3 + a)_1) is a constant and

d(P, P ')= (\x -x '\2 + \ t - t ’\)112.

(3.III) For the function (p: Г ->В there exists an extension 

Ф eC(1 +P)(G, B) n  C(2+a)(G, B),
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where /?е[а, 1) is a constant. For each such a function Ф we have

(3.1) U 4 > )(x , 0 )  =  ( F 2 <P)(x , 0 ) ,  xedE 0 (2),

where 8E0 is the boundary of E0.

T h e o r e m  3.1. I f  assumptions (2.IH2.V), (3.IH3.III) are satisfied, then 
problem (1.2), (1.3) has a unique solution и in the set

C(1+a)(G, B )n C i2’l)(G, В).
Moreover,

u e C(1+/})(G, B) n  C(2+a)(G, B).

Proof. We use the Bielecki’s norms introduced in [13] (p. 455, 456) and 
the norms

M \ b , [0, t u  =  sup \ e ~ a , \ \ v ( t )\\B: 0 ^ t  ^  T ]  

for re:C([0, T], В) and

1И 1в,[0,Г],я = llyllB,[0 ,r],a
+ sup[exp[-am ax(r, гЩ И О -^О Н в L t ' e[0, T]}

for rECw ([0, T], В). Taking into consideration relations (2.9), (2.4), assump­
tions (2.V), (3.1), (3.II), and Lemma 6.3, one can prove the following asser­
tions:

(a) F2: C(h0)(G, В) ->C(G, В), F2: C(1+a)(G, В) ->C(a)(G, B);
(b) there are constants N lf N2 > 0 such that

11^2«11в.б.«<^1+АГ2|МЙ?.й

for any a ^  0, и eC(1,0)(G, B);
(c) for any b > e there is a constant N3 (b) > 0 such that

11̂ 2 ui ~ F2 u 2 \\b ,g ,o ^  N3(b) ar IlUj — u2\\B ^ a, a ^  0 

for any uu  u2eC(1’0)(G, B) such that

I k l f â O ,  i = l , 2;

(d) for any b > e there is a constant JV4 (b) > 0 such that

\\F2u\\%G^N4m i  + \\um *4
for any ueC (1*a)(G, B) such that 1М1в,ба) < b.

(2) Concerning (L<p)(x, 0), we use Remark 1.1 of [11] with L p replaced by B . Since (2.9), 
(2.4) and Lemma 6.3 (iv) imply that (F24>)(x, 0) is independent of Ф (Ф being any extension of 
(p), equality (3.1) is correct.
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It follows from the above assertions that assumptions of Theorem 3.1 
imply assumptions of Theorem 4.1 of [13] in relation to problem (2.8), (1.3). 
Therefore, the assertion of Theorem 2.1 holds true for problem (2.8), (1.3). 
According to Theorem 2.1 this completes the proof.

4. Problem (1.2), (1.3) in a linear case. We consider problem (1.2), (1.3) in 
the case

П
(4.1) f ( x ,  t, u, p, q) = Z  Ы х > t)Pi + c(x, t)u + c0{x, t)q + f 0(x, t).

/= l

We retain assumptions (2.IH2.IV), whereas assumptions (2.V), (3.1), (3.11) 
result from the following one:

(4.1) bi5 c, c0 eC(a)(G), /о eC(a)(G, B) and |c0(x, t)\ ^  A u  (x, t)eG, where 
Ai is the constant introduced in assumption (2.V).

Making use of (2.IH2.V), (4.1), (4.1), one can find that for any 
ueC {l,0)(G, В) the unique solution of equation (2.6) is given by the formula

(4.2) (L3 u) (t) = g2 (t) {(Li u) (t) + f gx (y, t) [ f0 {y, t)
Et

П
+ Z  bi(y> Ому,-(У» t) + c(y, t)u{y, tjjdy],

i= 1
where

9i(t) = [ 1 -  \дЛУ, t)c0(y, t)dy] l .

T h e o r e m  4.1. I f  assumptions (2.I)-(2.IV), (4.1) and (3.III) are satisfied, then 
the assertion of Theorem 3.1 is true in case (4.1). Moreover, there are constants 
a0 ^  1, A8, Ag > 0 such that

(4.3) ||и||1?Д?< A, [||/о11в,с,а + IMIeic,.] + 2 ||<р||в.(;.в>. “ > «о,

(4.4) llnllfô*» ^  А9 O I/ore + IMIge"1], 

where г = (1 — /?)(3 + /?)~1.

Proof. The first assertion of the above theorem is an immediate 
consequence of Theorem 3.1. To prove estimates (4.3), (4.4) notice that 
operator F2 defined by (2.9) has now the following form

П
(4.5) (F2 u) (x, t) = [c0 (x, t) - 1] (L3 u) (t) + £  bt (x, t) ux. (x, t)

Tc(x, t)u{x, t) + fo(x, t),
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where L3 and L t are defined by (4.2) and (2.2), respectively. According to 
Theorem 2.1, the function и is a solution of problem (2.9), (1.3) and 
consequently, by Theorem 3.2 of [13], there are constants al ^  1, N 5 > 0 
such that

(4.61 N lü& î’s; N 5 a - '  [||F2 Kilns.. + 1М1&Ш + \M \U Î\ a »  a,.
Relations (4.5), (4.2), (2.2) and Lemma 6.1 imply that

(4-7) \\F2 m|Ib,g,« ^ N6[||M||fe0i  + ||/o lkG j, a ^ 0,

N6 > 0 being a constant. It follows from (4.6), (4.7) that there exist constants 
a0 ^  alf A8 > 0 such that (4.3) holds true. Using (4.3) with (3 = a and a = a0 
we obtain

(4.8) llullns” «  JV7 [| I /«I |B.e + 11 <p| ^11 <Pl I .
Nj > 0 being a constant. Relations (4.5), (4.2), (2.2), (4.8) and Lemma 6.2 yield 
the inequality

II^KlIgs «  ATeDI/ollns + llvllns’+llvllns'’].
N8 > 0 being a constant. Hence, by Theorem 2.3 of [12] applied to problem
(2.8) , (1.3), we obtain (4.4). This completes the proof.

It follows from the above proof that each of the constants a0, A8, A9 is 
independent of f 0 and q>. In the scalar case (i.e. В — R), the estimate (4.4) is 
the same as that one for solution of the first Fourier problem for the linear 
parabolic equation (see Theorem 3.6 of [8]).

5. An application of measures of noncompactness. In this section we 
prove an existence theorem for problem (1.2), (1.3) with the aid of Theorem 
2.1 of [14]. For this purpose we use the Hausdorff measures of noncompact­
ness fi, M{a), М{9 and M(£o in the Banach spaces

B, C(G, B), C([0, T I B ) ,  C(1,0)(G, B)

with respect to the norms

INIb. 11‘11в,6,я> II ' Нв,[0,Г],я» Il • llïci»

respectively (3). We recall the definition of ц. For any bounded set B0 cz B, we 
define fx(B0) as the greatest lower bound of all numbers s > 0 such that B0 
can be covered by a finite number of balls of radius s. The remaining 
measures of noncompactness are defined likewise.

We retain assumptions (2.I)-(2.V), (3.1) and (3.III), whereas instead of
(3.II) we introduce the following ones.

(3) Concerning measures of noncompactness see, for instance, monograph [1].
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(5.1) For any b > 0, there is a constant A xo(b) > 0 such that 

\ \ f (P ,u ,p ,q )- f (P ',u ' ,p ' ,q ) \ \B

< A 10(b)\ ld(P, P 'W+ [||n ■- w\\B+ ||p■- p b Y '*] 

for any P, P'eG  and (и, p, q), (и', p', q)eBn+2 such that

IMIb, IIk'IIb, IIpIIb. IIp 'IIb < b,
where у e(0, a) is a constant.

(5.II) There is a constant A X1 > 0 such that for any (x, t)eG, qeB  and 
any bounded sets U с  В, P = P1 x ... xP n <= Bn we have

/<(/(*, t, и ,  P, q)) A n  [/i(C/)+ £  n(P,)l
i = 1

where /(x , r, L, P, g) = {/(x, t, u, p, q): ueU , peP}.
Note that assumptions (2.V) and (5.II) imply in the standard manner the 

following condition.

(5.III) For any (x, t)eG and any bounded sets

U, Q c  B, P = Pj x ... хР л с Б "
we have

n ( f(x ,  t, V, P, Q)) tZ Atl !>(£/)+ i  р(Рд] + А1 H(Q).
i= 1

T h e o r e m  5.1. I f  assumptions (2.I)-(2.V), (3.1), (3.III), (5.1) and (5.II) are
satisfied, then there exists a solution

и eC(1+/J)(G, B) n  C(2 + y)(G, B)
of problem (1.2), (1.3).

Proof. Taking into consideration relations (2.9), (2.4), assumptions (2.V),
(3.1), (5.1), condition (5.III), and Lemma 6.4, one can obtain the following 
assertions for F2:

(a) F2- C<10)(G, B )->C(G, B), F2: C(i+a){G, B) ^ C M(G, B) and as­
sertion (b) from the proof of Theorem 3.1;

(3) for any b > 0 there is a constant Ng(b) > 0 such that 

\\F2 U x — F 2 M2||b ,G ^  N 9 (b) [llUj — M2||b ,G 1?̂

for any ux, u2 eC(1,0)(G, B) such that IK-Ĥ g^  b, i = 1, 2;
(y) for any b > 0 there is a constant N l0(b) > 0 such that

11*2 wIIb.g < N l0(b) [1 + 1М1в,£а)] 
for any ueC (1+a){G, B) such that | |u | |^ a) < b;

14 — Commentationes Math. 28.2
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(5) there is a constant iVn  > 0  such that for any bounded set 
U c  C(1+<X)(G, В) we have

M(a){F2 U )^  N n M ^0(U).

It follows from the above assertions that assumptions of Theorem 5.1 
imply assumptions of Theorem 2.1 of [14] in relation to problem (2.8), (1.3). 
Therefore, the assertion of Theorem 5.1 holds true for problem (2.8), (1.3). 
According to Theorem 2.1 this completes the proof.

6. Lemmas. In this section we state and prove lemmas which have been 
used in the previous sections of this paper. We begin with two lemmas 
concerning the functions

MO = I’m O'. OPiCv, 0 dy, MO = 1’м(у, t)p2(y, t)dy.
kt st

L e m m a  6.1. Let S eC(1), ueC (G ,B) and pl5 p2eC(G). Then 

yi e C([0, 7"]? Æ), ll̂ illn,[0,7’],a ^  Ay 2 IMIb.G.o HPl IIg> « = 1 ,2

for any aeR, where A 12 > 0  is a constant.

L e m m a  6.2. We assume that S eC(1), и eC(a)(G, B), p1,p 2eC(G) and 
P i ( x ,  t) satisfy the uniform Holder condition of exponent a/2 in t. Then

V{ eC(a/2)([0, T], В), Ы ^ 'л Ь и  К A i2 \ \ u \ \ ^  i = 1,2

for any aeR, where A l3 > 0 is a constant depending only on S, p̂  and p2.

Proofs. The assertions of the lemmas concerning the function can be 
proved in the standard manner with the aid of the formula

M 0 ~ M 0 =  f и(У’ t) Pi (y, t)dy
Et '\Es

+ f [u {y, t) pj {у, 0 и (y, s) px (y, s)] dy
Ef r 'Es

+ f u{y, s)pl {y, s)dy
Es XEt

and Lemma 3 of [10] (4).
To prove the assertions of the lemmas concerning the function v 2 we 

divide the surface S into a finite number к of parts

5‘ = !(y, t)eS: ( i - l ) ô  < t ^ i ô ] ,  ô = T/k, i = 1, ..., к.

(4) Note that Lemma 3 of [10] holds true under assumption SeC(1).
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Under sufficiently large к each surface S' can be divided into a finite number 
ji of surfaces Slj (j = 1, . . . ,7,) represented by equations of the form

fVjj hij(.yriji О? t
where

А,убС“ +*>(Вцх[(|-1)5,1г]).

For any t e[(/ — 1)<5, i<$] we have
X X

v2(t) = £  f t)P2 (y, t)dy = X f Wj^ÿ t)dÿr
j ~  1 S1/  J = 1 Dij

where Sltj = Jx: (x , t)eS lj}. Hence it follows that
h

v2 (t) -  v2 (s) = £  f [wl7 (ÿr. 0 -  WU [ÿ s)] </ÿr
7= i du

for any t, s e [ ( i -  1)<5, /<5]. The further proceeding is obvious. Thus the proofs 
of Lemmas 6.1 and 6.2 are completed.

L e m m a  6.3. Let assumptions (2.II), (2.IV), (2.V), (3.1) and (3.II) be satisfied 
and suppose S eC (1). Then the following assertions hold.

(i) L3: C(1,0)(G, В) ->C([0, Г], B) and for any ueC {1,0)(G, B) and 
a ^  0 we have

\\L3 и\\в,[0,Т],а ̂  ̂ 14 + ̂15 1М1в,(Р,в>
where A14, A l5 are positive constants and L3 is the operator defined in 
Section 2.

(ii) For any b > e there is a constant A16(b) > 0 such that

||L3 ux — L3 и2\\в,[о,т],а ^  ^ 1б(^)дГ|1м1 ~ w2l l a ^  1

for any uu  u2 eC(1,0)(G, В) such that ||м;||Й£0)л < ft, / = 1,2, where r is the 
constant introduced in assumption (3.II).

(iii) L3: C(1 +a)(G, В) ->С(л/2)([0, T], JB) am/ /or any b > e  there is a 
constant A xl{b) > 0  such that

n̂ 3 ^ л 17 (Ь) [ i + цм||й5“':

for any MeC(Ua)(G, B) such that ||м||в(̂ а) ^  b.

(iv) If  ux, u2gC(1,0)(G, B) and ux = u2 on Г, then

(L3Mi)(0) = (L3u2)( 0).

Proof. The first part of (i) follows from the definition of L3, Section 2.
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Using (2.1H2.5), (3.1) and Lemma 6.1, we find that

II-L2 (m, L3 м)||д,[0,Г],в ^  N 1 2 “h -̂ 13 IMIfi.G.fl + -̂ 3 11-̂ 3 м11в,[0,Т],а>

where iV12, N 13 > 0 are constants independent of a. Hence, in view of (2.7) 
and

(6.1) L3u = L2(u, L3u),

we obtain the inequality in (i).
To prove (ii) note that

IM*> 011b, Ihx /* , Olle < beaT, i = 1 , 2, (x, t)eG.

Hence, taking into account (2.1H2.5), (2.7), (2.V), (3.II), Lemma 6.1 with и 
= щ, we obtain (ii).

In order to prove (iii) take any b > e  and и eC(1 +a)(G, B) such that 
1М1в,ба) <  b. It follows from (2.3) and (6.1) that

(6.2) v(t) = (Ll u)(t)+ I' g l {y, 0 (T7! (w, i>))(y, t)dy,

where v = L3u. Now, as in the proofs of Lemmas 6.1 and 6.2, we use the 
formula
(6.3) v(t)-v  (s) = [(Lt u) (t) -  (L1 u) (s)] + I' g 1 (y, t) (Ft (и, v)) (y, t) dy +

Et XEs

+ ]' [gi{y,t)(Fl (u,v))(y,t)
Et r^Es

~ 01 (У, s)(Fl {u, v)){y, s)]dy +

+ I’ l - 9 i ( y , s y ] ( Fi(u,v))(y,s)dy = I1 + I2 + h  +  U'
Es XEt

Lemma 6.2 yields the estimate

(6-4) H/lllB^ ^ 1 4 k - ^ /2|NlKG±a),

N 1a > 0 being a constant. Taking into account Lemma 3 of [10], assumption
(3.1) and assertion (i), we find that

(6.5) l № < | t - s | [ N 15 + ^ ^ №  J = 2,4,

N 1S and N 16 being positive constants. To estimate I 3 we use the formula

(6.6) /3 =  J' [0i(y, t) — gl (y, * )](/](“, v))(y, t)dy
Et nEs

!- J‘ gi(y, s)[(F1(u,v))(y,t)-(F1(u,v)){y, s)]dy = I 3l+ I32.
Et 'nEs
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Assumptions (2.IV), (2.V), (3.1), (3.II) and assertion (i) imply that

(6-7) ||/31||* < \t-s\*12 [А 17 + А 18 |ИЙс0)],

(6.8) ||/32||B ^  \ t-s \a/2N 19m i  + \ \ u \ \ ^  + A3\\v(t)-v(s)\\B,

where N l7, N l8 and N 19(b) are positive constants. Combining relations
(6.2)-(6.8) and assertion (i), we obtain assertion (iii).

Now take any ueC (1,0)(G, В) and te\_О, Т]. Taking into consideration 
the definitions of the operators Lx and L3, we conclude that each of the 
numbers (L1 u)(t) and (L3u)(t) depends only on the functions u(-,t) and 
ux(-, t). Hence assertion (iv) follows, which completes the proof.

L e m m a  6.4. Let assumptions (2.II), (2.IV), (2.V), (3.1), (5.1), (5.II) be 
satisfied and suppose 5 eC (1). Then the following assertions hold.

(i) Assertions (i) and (iv) of Lemma 6.3.
(ii) For any b > 0 there is a constant A l8(b) > 0 such that

||L3 i/j — L3 и 2\\в,[о,т\ ^  ^ 1 8  (b) CIIMi мг11

for any Ml5 u2 eC(1,0)(G, B) such that НмЛв1̂ ^  b, i = 1,2.
(iii) L3: Cil+a)(G, B)->C(y,2)(\_0, T], B) and for any b>  0 there is a 

constant A l9(b) > 0 such that

11  ̂ИНЙ8.Ч < (b) Ci +

for any MeC(1 +a)(G, В) such that ||и||в,^а) ^  b.
(iv) There is a constant A20 > 0 such that for any bounded set 

U a  C(1 +a)(G, В) we have

M(0e>(L3 U) ^  A20 M ÿ0(U), a>  0.

Proof. Assertion (i) follows from Lemma 6.3. The proof of assertions 
(ii) and (iii) is similar to that of assertions (ii) and (iii) of Lemma 6.3, 
respectively.

To prove (iv) write

(6.9) (L4u){t) = \g iiy ,  0(^1 (u, L3u))(y, t)dy, ueU.
Et

Using (5.III), (2.4) and the main properties of Hausdorffs measures of 
noncompactness, and proceeding like in [14] (p. 619, 620), we obtain

(6.10) M<?(L4 U) ^  N 20 M ^ 0(U) + A3 AfÇ>(L3 U), 

where A3 is defined by (2.7), N20 > 0 is a constant and
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(6.11) Lt U = \Ци: ueU).

We also have

(6.12) M ^ (L 1U ) ^ N 21M%(U),

N21 > 0 being a constant. It follows from (6.2) and (6.9) that

(6.13) L3w = L1n + L4n, ueU.

Relations (6.10H6.13) yield the inequality

Mj?(L3 U) ^  (N20 + N21) M ^0(U) + A3 Mÿ  (L3 l/), 

which implies assertion (iv)* This completes the proof.

7. Final remarks. The employment of a Banach space В instead of the 
Euclidean space R enables us to obtain various classes of equations with 
parameter. Take, for instance, В = C[a, b]. Then problem (1.2), (1.3) has the 
form

n

(7Л) X аи(х, t)uxxAx, t, s ) -u t(x, t , s ) +K  f g(y, t)ut{y, t, s)dy 
i j ~  1 Щ

= F(x, t, s, u{x, t, s), ux(x, t, s), ( g{y, t)ut(y, t, s)dy),
Èt

(x , t ) e G \ r ,

(7.2) u(x, t, s) = <p(x, f, s), (x, t) еГ,

where se[u , b] is a parameter. For a solution u of the above problem we 
have

‘ (7.3) u{x, t, ■), ux.{x, t, ■), ux.Xj(x, t, ■), ut{x, t, -)eC[a, b]

for any (x, f)eG, which implies the continuity of functions (7.3), uniform with 
respect to parameter s. Taking В as a Banach space of differentiable 
functions, we obtain the differentiability of functions (7.3) with respect to 
parameter s for any solution и of problem (7.1), (7.2).

Note that problem (7.1), (7.2) involves certain random case. Namely, let 
s = соей, where (Q, P) is a complete probability space. Then В may be
taken as the Banach space consisting of all random variables X: Q ->R with 
finite norm

т в = ш ш \ ,,р т у 1‘‘ o?e[i, oo) being a constant)
h
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or

P ||B = ess sup \X (co)|.
(oeQ

In [2] there has been considered problem similar to (7.1), (7.2) in the 
case where s is a parameter with values in a Banach space. Various results 
concerning boundary-value problems for diffrential equations with parameter 
can be found in references of [2].

Now we give an additional comment concerning assumptions (2.V) and
(3.III). It is clear that the restriction on the constant A 1 > 0 in (2.V) may be 
replaced by the appropriate restriction on the constant K. Namely, under 
arbitrary A 1 > 0 the condition A 2 > A 1 is satisfied for sufficiently large 
1*1 •

The right-hand side of (3.1) depends on (Ь3Ф)(0). The value of the last 
expression is uniquely determined by cp. However, it is possible to determine 
effectively the above value if a formula for operator L3 is known (see (4.2)). 
Now we give two nonlinear cases of equation (1.2) where (Т3 Ф)(0) can be 
effectively determined. Let the function/in (1.2) be independent of L0u. Then 
operator L3 is defined by the formula

(L3 u)(t) = (Lx u)(t)+ f gl (y, t)f(y , t, u{y, t), uy{y, t))dy.
Et

Now let the function /  in (1.2) satisfy the condition

f{x ,  0, и, p, q) = 0, x e E0, u, qeB, peB n.

Then we have (L3u)(0) =(Ll u){0), which implies the following formula for 
(3.1)

(L(p)(x, 0) = - K { L X (p){0), xedE 0.

Finally, one can extend the results of this paper to the general cases 
which have been considered in papers [13], [14]. Namely, the function /  in
(1 .2) can be replaced by an operator, and the single equation can be replaced 
by a system of equations (finite or infinite). However, for simplicity of 
considerations we have not investigated the above general cases.
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