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On Fourier’s first quasi-linear and linear iterated problems 
and on Fourier’s second linear iterated problem 

in the (n +  l)-dimensional time-space cube

Abstract. Constructions of solutions of the Fourier’s first quasi-linear and linear iterated 
problems and a construction of a solution of the Fourier’s second linear iterated problem in the

domain ( ) (  (—cf, cf)) x(0, T], T <  oo, are given.

1. Introduction. In this paper we construct solutions of the Fourier’s first
n

quasi-linear and linear iterated problems in the domain D = ( X ( ~ c«» ci)) x
i = 1

x(0, T], T  < oo, and we construct a solution of the Fourier’s second 
linear iterated problem in D. For this purpose we use the Green’s method, 
the method of heat iterated potentials, the Picard method of successive 
approximations and a similar transformation to H. Block’s transformation 
from [10]. To construct the solutions of the problems considered, we use
[4]—[9]. This paper is a continuation of those papers and bases mainly on 
[9]. We may apply [6] - [ 8] since all the results given in those papers in the

Л

domain ( X  ( ~ сь <т)) x(0, T), T  ^ oo, hold also in the domain D.
i = 1

The results obtained here contain the results from [ 1], [2], [4], [5], [9] 
and [14]. The results of this paper are direct generalizations of those given 
by the author in [4], [5], [9], indirect generalizations of those given by 
Baranski and by Musialek in [1], [2], and generalizations and indirect 
generalizations of those given by Milewski in [13] and [14], respectively.

2. Preliminaries. Throughout the paper we use the following notations:

/ ? _ = (  — oo, 0), R+ = (0, oo), R = ( — 00, 00),

N =  {1, 2, . . .} ,  JV„ = N u { 0 },

R" = R x ...  x R , , N q = N0 x ... x JV0 (n-times),

/„ = {1, 2, ..., и}, Гй = /„и {0} (neiV),
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X = (xl5 Xn), y = (yu  . . . , y j ,

X* = (Xj , . . . ,  X; — i ; Xj+ j , . . . ,  X„) (l G /„),

Х*у (^1 f • • • » 2Cj — 1 > ( 1У' %i + 1 ) • • • » %n) 0"  ̂̂ n> j  ̂  ̂ 2)»

D0 = — c«'» c«)» ^ 0  =  Dq\D 0, S0 = Dq x JO],
i = 1

A  = X ( " cbCt) (te/„),
k= 1

D j = ( - C u  CX) X ... X( C{_ 1 , Ci_i) X j(-iyc ,J  x ( - c i + 1, Ci+1) X ...
• x( cn, c„) (ig /„, j g /j),

D — Dq x(0, F], S/ =  D/ x(0, T], S/ =  D /x(0, Г],
T < со (i e !„, j  e l 2),

Z{ = 2(A X[0, T])\ |(x*, /): t = Oj (/ G U
n

PXtt = Ax- D t, Pys = Ay + Ds, Px>t = Px,t- c ( 0 ,  а = П а*>
i = 1

where = J] ajD*., c is a function defined on the interval [О, Г] and a{ e R .
»= 1

for ig /„.
By Ax, F*x>t, P{>s and P£>( we denote the /с-iterations of the operators Ax, 

Pxt, Py>s and Pxt, respectively. As long as it does not lead to misunder­
standing, the operators Ax, Pxt, Pys and PXtt will be denoted by the sym­
bols: A, P, P and P.

П П
For each а =  (al t ...» ajGiVo, x e R n we put: |a| = £  och a! = f |a , ! ,

i= 1 i = l

ал = П (“i f  and D*x =  DH • • • D“"„ • Moreover, D“>r : = Df D“% where
i = 1

а =  (а, а*), a GiVo, а* e=/V0, х eR n and t g[0, Т].
We assume that m is an arbitrary fixed natural number.
We consider here only real functions and we use the concept of local 

uniform convergence of considered integrals in the sense of [ 12].
Let a,e/?+ for ieJn. For every fixed index iel„ we define the function 

R2 \ {0} -* R by the formula
. j  (4яа1т)“ 1/2ехр(-(4агт)~Ч 2) for £ gP, tgK+,

(С, т ,а () - | 0 for Ç e R, iG R-  or Ç e R \  {0}, т =  0.
Now, for all x e R n, у e Rn, 0 ^  s < t, iE lnij E l 2 and /cgN0, we define the 

functions l/JJ, I/, by the formulae
£ /$ (* , t, yh s) =  4 r fo -x tt,

(2.1)
Ui(x,-, t, yt, s) =  Uit0(Xi, t, У;, s), 

where x $  = ( — l)k (x{+ ( — 1У+12/cc,).
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Next, for every x e R n, y e R n, 0 ^ s < t <  T  and for every fixed natural 
number q, we define the function Gq by the formula

(2.2) Gq(x, t, y, s) ( - 1 ) « - 1

(< 7 -1 ) !
(t~s)q 1G (x , t ,y , s ) ,

where
n

(2.3) G(x, t, y, s) = П  G,(xh t, yh s),
i= 1

(2.4) G,(xf, t, yit s)

= Ui(xh t, yh s)~l~ X (-IffC/ji^Xi, t, yh s )+ U $ (x h t, yh s))
k= 1

and the functions Uit l /Ц (i e l n, j e l 2, keN )  are given by formulae (2.1). If 
q — 1, then we apply the symbol G in place of the symbol G1.

In the sequel, we shall need the following lemmas:
Lemma 2.1 ([6]). Let 0 ^ s < t ,  oleN0, x > — 1 and i e l n. Then there 

exist positive constants Aa and Вл х such that
(a) |D |^ (£ , t - s ; a,)| < Aa{ t-s )~ (a+l)l2 for £etf,
(b) j ID\ t — s, Of)I d<2; < (t — s)_a/2, where A = max {flj, . . .

R
a ^. . . ,  U „  j ,

(c) f - s ;  q)| <  B«,,|«r*-x‘ , (< -s)“/2 for ( e R \ { O'.
Particularly,
(d) |D“.I/lf>(xi, t , y f, s ) |< ( 2c|.)-a- J<- 1( /c - l ) - a- ’<- 1Be>x( t - s r /2 for xh 

y i E l - q ,  cd, j e l 2, k e N \ {  1}.
Lemma 2.2 ([7]). Ler be an arbitrary fixed natural number, and let G 

and G9 be the functions defined by formulae (2.2)-(2.4). Then:
(a) The function Gq( x , t , y , s ) and the derivatives Dax t Gq(x, t, y, s), 

D* sGq(x, t, y, s) (aeNo+1, |aj #  0) are continuous for all {x, t)eD 0 x(0, T], 
(y, s)eD, s < t.

(b) Pkx t Gq{x, t, y, s)

= Pky>sGq(x, t, y, s) =
Gq k(x, t, y, s) 
0

for к = 0 , 1, ... ,  q -  1, 
for к = q, q + l ,  ... ,

where (x, t) e D0 x(0, T], (y, s) eD, s <t.

(c) D“*G(x, t, y, s) = X
/>6 n[
101 = «*

where (x, r)eD0 x(0, T], (y, s) e D, s < t  and a* is a natural number.

(d) f* f Gq(x, t, y, s) = 0 for (x, t) e S{ (i e/„, j  e /2, к e N0), {y, s) eD, s e t .

- ^ - aP o l pG(x, t, y, s),
P-
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(e) Pj>tD,pG«(x, t, yp' \  s) = 0 for (x , t )eS {  (i, p e l n, j , r e l 2, k e N 0), 
(y, s) eD, s e t .

(f) lim DkGq(x, t, y, s) = 0 for (x, t)eD, {y, s)eD, x Ф y, s < t  (/cg/^ .j).
S ~>t

In this paper we shall denote by C and C the following constants:

C = ( max {3 yf$nA Ay, 2(2cj)~-/~1 BJtl ]T k~2})n,
ieln,jeï2m - l  k= 1

C = ( max }3Aj; 2 (2c,)~j~2Вjtl £  k ~2})",
iel„Jeï2m- 2 k= 1

where Ajb BjA 0‘e / 2m-i) are the constants from Lemma 2.1.
Now we shall prove the following:
Lemma 2.3. Assume that c is a continuous function in the interval [0, T], 

T  < oo, у is the function given by formula

(2.5) у (0 = exp ( -  J c ( t )  dr), t g [О, Г],
о

and Q = Q0 x (0, T], where Q0 is an arbitrary domain in Rn. Then:
(a) I f  v is a function such that there exist the derivatives Dxt v (a = (a, a*), 

SieNo, a* e N 0, 0 < |â] +  2a* ^ 2i, i e N ) in Q, then

(2.6) Pk (y (t) v (x, t)) = y (t) Pkv(x, t) 

for (x, t)eQ, ke l i ,  ieN .
(b) I f  v is a function such that there exist the derivatives D\v (i e l m- i ) in 

Q0 x {0} and if there exist the derivatives c(r)(0) = 0 (reIm- 2, m >  2), then

(2.7) Dt(y(t)v(x,t)) = D tv{x,t)  

for (x, OeQo X {0},
Proof, (a) Put i = 1. Then 

P(y(t)v(x, t))

= y(t)Ax v{x, t) + c(t)y(t)v(x, t) — y(t)Dt v(x, t) — c(t)y(t)v{x, t)

= y(t)Pv(x, t) for (x, t) eQ.

Suppose that for an arbitrary fixed natural number i formulae (2.6) hold. 
Consequently

I* * 1 (y(t)v(x, t)) =  P (y (t) P* v (x, t))

= y{t)Ax Pkv(x, t)Ac{t)y(t)Pkv(x, t) — y{t)Dt Pk v(x, t)-c(t)y(t)  Pkv(x, t)

= y(t) Pk+i v(x, t) for (x , t ) e Q , keif.
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Then, from the mathematical induction principle, assertion (a) is true,
(b) By the Leibniz theorem

Df(y(t)v{x, t)) =  £  (k\D t~Jy{t)Djv(x, t) + y(t)Dtv(x, t)
j = 0 V7 /

for (x, t)eQ 0 x {О}, к g lm— i , m ^ 2.
Since the derivatives Diy(t) (j e l k, / с е m ^ 2) are linear combina­

tions of such products that at each of them there is at least one derivative of 
the form c{r)(t) (ге /^_15 j e l k, /ce/m_ l5 m ^ 2), it follows that, by the 
equations c<r)(0) = 0 (r e /m- 2, m ^ 2) and y(0) = 1, the proof of assertion (b) 
is complete.

3. Formulations of Fourier’s first quasi-linear and linear iterated problems 
of type (C f) and (C™). A continuous function и in D is called a quasi-(m)- 
regular [(m)-ra?u/ar] in D if the derivatives Dax t u (a = (a, a*), <хеЩ, a* e/V0, 
0 < |a| + 2as|5 ^  2m— 1 2m]) are continuous in D.

Given the functions f  f k, f{k (iel„, j e l 2, ке1т-1), Fourier’s first quasi- 
linear [linear] iterated problem of type (CJ) in D consists in finding a quasi- 
(m)-regular [(m)-regular] function и in D, satisfying the equation

(3.1) Pmu(x, t) = f ( x ,  t, u{x, t)) for (x, t)eD

[(3.L) Pmu(x, t) = / ( x ,  t) for (x, t)eD ],

satisfying the initial conditions

(3.2). Dfu(x, 0 =  |{ ° ,(X.)
t / k W

for (x, t)eS0, к — 0, 
for (x, t )eS 0, k e l m- i

and satisfying the boundary conditions

(3.3) fiioix1, t) for (x, t) 65/, i e l n, j  e l 2, к = 0,
fik (x‘> 0 for (x> *) 65/, i e/„, j e l 2, к e /m_ !.

A function и with the foregoing properties is called a quasi-(m)-regular 
[(m)-regular] solution in D of the above problem, and this problem is called 
shortly the (C™) quasi-linear [(C™) lineaf\ problem.

Given the functions F, Fk, F\tk (i e l „, j e l 2, /ce/m_i), Fourier’s first 
quasi-linear [linear] iterated problem of type (С™) in D consists in finding a 
quasi-(m)-regular [(m)-regular] function и in D, satisfying the equation

(3.4) Pmu(x, t) = F(x, t, m(x , t)) for (x,  t)eD

[(3.4') Pmu{x, t) = F(x, t) for (x,  t)eD ],
satisfying the initial conditions

F0(x) for (x, t )eS 0, к = 0, 
Fk(x) for (x, t )e S 0, /сб/т_!

(3.5)
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and satisfying the boundary conditions

(3.6) Pku(x ,t)  = Fio(x\  t)
F i k i t )

for (x, t)eSj, iel„, j e l 2, к = 0, 
for (x, t)eS{, i e l n, j e l 2, k e l ^ ^ i 1).

A function и with the foregoing properties is called a quasi-{m)-regular 
l(m)-regular'] solution in D of the above problem, and this problem is called 
shortly the (C$?) quasi-linear [(CJ?) linear] problem.

4. Properties of heat volume iterated potentials. Let

(4.1) X a(x, f ; w) =  J Уа(х, t, s; w)ds, 
о

where

(4.2) . У*(х, t, s; w) = -  f f (y , s, w(y, s))D“>tGm(x, t , y, s)dy,
d0

w = w(y, s) is a function defined for (y, s)eD, f  is the given function, Gm is 
the function given by formulae (2.2}-(2.4), a = (â, a*), à =  (al5 . .. ,  a„)e/Vg, 
<x*eN0.

The integral X°  is called the heat volume iterated potential of the 
domain D.

Lemma 4.1. I f  w =  w(y, s) is a function defined for (y, s)eD and such that 
the composite function f ( y ,  s, w(y, s)) is measurable and bounded in the domain 
D, then:

(a) The integrals X я (|5j + 2a* ^ 2m— 1) are locally uniformly convergent 
in the domain D0 x(0, Т]. Moreover, the integrals Ya (|a| + 2а+ < 2{m — 1)) are 
locally uniformly convergent, as the functions o f the variable (x, t), in the 
domain D0 x(0, Т].

(b) lim y*w (x, t, s; w) = 0 for (x, t) eD0 x(0, T], 0 <  s < t, where a [r]
s -*t

:= (à, a# —r—1), r e î ^ - i ,  a*e/V, 0 < \S\-I-2a* <  2m.
(c) For every point (x, t)eD 0 x(0, T] there exist the derivatives Dx t X° 

(0 < |à| + 2a„. ^ 2m— 1) and Dax>t X°(x, f, w) = X a(x, t; w) (0 < |5] +  2a* ^  
2m— 1) for all (x, t)eD 0 x(0, Т].

Proof, (a) To prove this assertion for the integrals X я (|ô]-f2a*<; 
2m — 1), let us fix a multi-index a = (a , a*) such that |5| +  2a, < 2m— 1 and 
observe next that by the Leibniz theorem on the differentiation and by 
assertion (c) of Lemma 2.2 we obtain the equation

_  (~  l)m<** ! y  ( m - l ) ( m - 2 ) . . . { m - j ) 
(m — 1) ! jh о Я

aJ
i  - л t; w)>

(*) The left-hand sides of equations (3.2), (3.3), (3.5) and (3.6) arc meant in the limit sense.
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where

I j { x , t ; w )  = ] j f ( y ,  s, w(y, s))(t-s)m j 1 DPXJ G(x, t, y, s)dyds, 
о d 0

(x,t)eD o x ( 0 , n  aj = (a{,...,aÔ , ^  = ( $ , . . . , $ ) ,  $ = а *  + 2а' (/ce/J, \p\
— jô] + 2a* — 2j  ( j  e ïaJ. Consequently, to prove the first part of assertion (a), 
it is sufficient to show that the integrals Ipj (\Pj\ = JS] + 2a* — 2j, j e î a)  are 
locally uniformly convergent in the domain Do x(0, Т]. For this purpose, 
observe that by assertions (b) and (d) of Lemma 2.1

II fij{x, t ; w ) \ ^ C  sup !/| (ppJ(f) for (x, 0 e D0 x (0 , T] ,

where

V A P  = П  [ ( t - s ) ' ^ 2+ ( t - s ) 1/J]<<s,
О г — 1

PJ = (Pi, Pi), \Pj\ =  |S| + 2a* — 2/ 0 ‘g/J .  Since m - j - l - % \ p J\ ^ J 0 'efaj, 
the integrals (p^ (\PJ\ — |а| +  2a* — 2/, j e FaJ are the sums of the finite number 
of the integrals

о
Therefore, the integrals Ifij (\Pj\ =  |oc] + 2a* — 2/, j  e Ta)  are locally uniformly 
convergent in the domain Z)0 x(0, T] (see [10], § 59.4), and by the fact that 
the multi-index a is arbitrary the proof of the first part of assertion (a) is 
complete.

To prove assertion (a) for the integrals У* (|ô| + 2a* ^ 2(m—1)), let us fix 
a multi-index а = (а, a*) such that |а| + 2а* ^ 2 (m--l) and observe that as in 
the proof of the first part of assertion (a) we obtain the equation

ds
( t - s ) x

(x < 1).

Y*(x, t, s; w) =
( - l ) wa*! £  (m— 1) (m — 2)...{m—j)
( т - 1) Г Д  j \ L  s;

where

(4.3) Jpj{x, t, s; w) = J‘ f ( y ,  s, w{y, s)){t-s)m~j ~1 D?'G(x, t, y, s)dy, 
fio

(x, t)eD0 x(0, T], 0 *Ss<t, xJ = (a { ,.... «Û, ftJ =  (/?{,..., fiù, $=<** + 2af 
( к е Ц  1Й = !«1+2х,-2i ( j  е1л). Consequently, to prove the second part of 
assertion (a), it is sufficient to show that for arbitrary fixed and f  > 0 
such that 0 ^  s + f  < t  ^  T  the integral J^j (\PJ\ = |5| + 2а*- 2 j) is locally 
uniformly convergent in the domain D0 x(T, Т]. For this purpose let x0 be 
an arbitrary fixed point belonging to the set D0, e be an arbitrary fixed
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positive number and K n(x0) be a sphere with the center x 0 and a radius rj. 
Now, by assertions (a) and (d) of Lemma 2.1, we have

\K eJ J x ’ s; ^ Csup\f\{l/ ( t - s )  j dy 
D  0>

for (x, t)eD 0 x(0, TJ, 0 ^ s < t,
where

K pj„(x, t, s;w) = j f ( y ,  s, w{y, s)){t-s)m~j ~l DPXJ G(x, t, y, s)dy,
D 0 r^K^XQ)

= ( t - s ) m~J~i П  [ ( f - s ) ' (̂ +1)/2 + ( t - s ) 1/2],
r =  1

fi1 = (/}{,..., Pi), I P‘\ = 101 + 2a, -  2/. Therefore

\K j (x, t, s; w)| «  Csupl/I Г” - - '- 1 П  [ î " <',;+,l/2+ T 1'2]r„l/">
P ,Ч D r=  1

where (x, t) eD 0 x(T, TJ, O ^ s + T  < t  and t„ is the volume of the n- 
dimensional unit sphere. If rç satisfies the inequality

C2 su p |/| Tm~j~ 1 П  [Т~(̂ +1)/2+ Т 1/2]т,
О r= 1

then

\Kpj (x, t, s; w)| ^  e for (x, t) eD0 x( f ,  TJ,  0 ^  s + f  <t .

Since the multi-index a, the index j, the point x 0 and the number T  are 
arbitrary, it follows that the proof of assertion (a) is complete.

(b) Let us fix a multi-index a = (â, a*) such that a*eiV and 0 <  
|oc| +  2a* < 2m. By the Leibniz theorem on the differentiation and by 
assertion (c) of Lemma 2.2, we obtain the equations

Уя[г](х, t, s; w)

( — l)m (a* — r — 1) ! 1 (m — 1) (m — 2 ) . . .  (m —j)
= (й — 1) ! - J„ ------j!------ X

Cjgd

* I  -JJ^ ( x ,  t, s; w),
= j - 1

where J j are given by formula (4.3), (x, t) eD0 x(0, TJ, 0 ^  s < t, aj 
<), Pj = ( Ж Pi), Pi = a k + 2ai (k e /„), \pj\ =  \S\ + 2a* - 2r-  

— 2j—2, j e î e - r- lt геГа !. Simultaneously, by assertions (b) and (d) of 
Lemma 2.1, we have
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IJ A x ,  t, s; w)I < C s u p | / | 1 П  +
P D r =  1

where (x, t) eD0 x(0, T], 0 ^ s < t, fij = ft{ — <xk + 2ct{ ( k e ln),
\fj\ = |<х| + 2 а * -2 г -2 / -2 ,  j e l â r- u  r e l â Y. Consequently, assertion (b) 
holds since m - j -  1 > r + \  > 0  and m - j - 1 +%n > 0 for all possible;.

(c) Arguing analogously as in the proof of assertion (iii) of Lemma 6.1, 
given in [9], we obtain

a*~ i
Dax t X ° (x, t ; w) =  X a(x, t; w)+ £  ^ ( lim Y*lr](x, t, s; w))

r — 0 s -*t

for (x, t) e D 0  x (0, Г], а = (а, а*), a gNq, а* eiV, 0 < jôc] + 2а  ̂ < 2m— 1.
The above equations and assertion (b) imply assertion (c).
Lemma 4.2. I f  the assumptions of Lemma 4.1 are satisfied and if x 0 eD0 is 

an arbitrary fixed point, then the function X° given by formulae (4.1) and (4.2) 
satisfies the equation

(4.4) Pm_1 Z°(x, t; w) = -  J j f ( y ,  s, w{y, s))G(x, t, y, s)dyds
о d 0

for ( x ,t ) e 5 o x(0, T],
the initial conditions

(4.5) Df X°(x, t; w) ->0, as (x, t) ->(x0, 0+), (x, t)eD, к e lm_!

and the boundary conditions
(4.6) f* X°{x, t; w) = 0, as (x, t)eS{, i e l n, j e l 2, /с e /m_ x.

Proof. Equation (4.4) is a consequence of assertion (c) of Lemma 4.1 
and of assertion (b) of Lemma 2.2.

Simultaneously, by an analogous argumentation as in the proof of 
assertion (a) of Lemma 4.1, we obtain the following estimations:

\Df X°(x,  £; w)| ^
Ck\ Л, (m—l)(m —2)...(m —;)

( m - l ) ! A Л £
\aJ \ = k - j

OF !

xsupl/l |(f-s)m j 1 П  C(r_ s ) “̂  +  (t -s )1/2]ds,
r= 1

where (x, t ) e 5 o x(0, 7], /с e _ x. Since m — j  — 1 — |aJ| ^  0 for j e l k and 
k e l m̂ .1, conditions (4.5) hold.

Conditions (4.6) are a consequence of assertion (c) of Lemma 4.1 and of 
assertion (d) of Lemma 2.2.

Lemma 4.3. Assume that:
(a) The function f ( y ,  s, z) is continuous for (y, s)eD, zeR .
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(b) The functions df {y, s, г ) / д у ( ( iel„ ), df (y, s, z)/ôz are continuous for 
(y, s)eD, zeR .

(c) w is an arbitrary function continuous in D and such that the derivatives 
dw(y, s)/dyi (i'e/J are continuous in D.

Then the function
t

v(x, t;w): = — j J / ( y ,  s, w(y, s))G(x, t, y, s)dyds 
о d0

satisfies the equation

(4.7) Pv(x, t;w) = f ( x ,  t , w(x, t)) for (x, t)eD.

Proof. Let w = w(y, s) be an arbitrary fixed function with the proper­
ties from assumption (c) and let

/ (y ,  s) := / (y ,  s, w(y, s)) for (y, s)eD.

Hence, by assumption (a), the function /  is continuous in D and since

d/(y, s) = cf(y, s ,  w(y, s)) [ df(y, s, w(y, s)) dw(y, s) 
ду{ ду; dw dyt

for (y, s)eD, i e l n,

it follows, by assumptions (b) and (c) that the functions cf/dyi (i e /„) are 
continuous in D. Now, applying to the function /  Szarski’s theorem (see [10], 
p. 523), we obtain, by the fact that w is an arbitrary function, equation (4.7).

Theorem 4.1. I f  assumptions (a)-(c) of Lemma 4.3 are satisfied and if the 
function X °  is given by formulae (4.1) and (4.2), then:

(A) The derivatives D“ttX 0 (|aj + 2a* ^  2m— 1) are continuous in the 
domain D0 x (0, T] and the derivatives DaXtt X°  (|a| + 2a* = 2m) are continuous 
in D. If, moreover, X°(x,  0; w) :=  0 for x e D 0, then the function X° is 
continuous in D.

(B) The function X° satisfies the equation

(4.8) PmX°(x , t;w) = f ( x ,  t, w(x, r)) for (x, t)eD, 

the initial conditions

(4.9) D*X°(x, t;w) = 0 for (x, t )e S 0, k e l m. x 

and the boundary conditions

(4.10) PkX°(x, t;w) = 0 for (x, t)eS{, i e l n, j e l 2, k e l m̂ 1.

Proof. (A) The continuity of the derivatives D*t,X °  (|51 + 2a* ^ 2 m -1) 
in D0 x{0, 71 is a consequence of Lemma 4.1 and the continuity of the 
function 2f° in D is a consequence of assertion (a) of Lemma 4.1 and of 
conditions (4.5) for к = 0.
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To prove assertion (A) for the derivatives Dax t X° (|<х| + 2а* = 2m), it is 
sufficient to show that the derivatives DXpXqDx t X 0 and Dt Dx t X°  (|tx| + 
+ 2a* ^ 2(m— 1); p, q e l „) are continuous in D. First, we shall prove that the 
derivatives DXpXqDx t X 0 (|6c] + 2a+ ^ 2(m—1); p, q e l „) have this property. To 
this purpose let .\0 be an arbitrary fixed point belonging to the domain D0 
and let Kqixo) be a sphere with the center x0 and a radius t] such that 
Kr,(xo) <= D0. By the fact that the function Gm(x> t, y, s) and the derivatives 
Dax t Gm(x, t, y, s) (aeNo+1, |a| #  0) are continuous for (x, t)eD 0 x(0, T], 
(y, s) e D, s < t  and by the fact that

limD^Gm(x, t, y, s) = 0 for (x, t)eD, (y, s)eD, x #  y, s < t, /сe /w_ t
S -+ t

(see assertions (a) and (f) of Lemma 2.2), the derivatives

Ac pxqD* x A - S J f ( y , s ,w { y ,s ) )G m(x , t ,y ,s )d yd s]
0 D 0 \ K ^ x 0 )

(|51 + 2a* ^ 2 (m— 1); p, qel„)

are continuous at each point (x0, t), where te (0, Т]. Therefore to prove that 
the derivatives DXpXqDx t X°  (|<x| + 2a!lc < 2(m—1); p, q e l j  are continuous in
D it is sufficient to show that the derivatives

(4.11) DXpXqDaX't [ -  J j  f ( y , s ,w { y ,s ) )G m(x , t ,y ,s )d y d s ]
0 Kqixg)

(|ff| + 2a* < 2 (m -l) ;  p, qe l„ )
are continuous at each point (x0, t), where fe (0, Т]. For this purpose fix а 
= (а, a*) such that |а|+ 2а  ̂ ^ 2(m —1), fix p,qEl„  and observe that, by 
assertion (c) of Lemma 4.1 and by an analogous argument as in the proof of 
assertion (a) of Lemma 4.1, we obtain the equations

D Da
x p x q Х ’1 f ( y ,  s, w(y, s))Gm(x, t, y, s)dyds

О К ц(х 0 )

= D, f ( y ,  s, w(y, s))Dx D*'t Gm(x, t, y, s)dyds
0 K„(*0)

(—1У Х ! (m — 1) (m — 2) . . . (m —j)
(m — 1)! Д  j \

~olJ

I *ji =**-./
where

L iiJ ,4 ( x > w) = J 1 f(y> w(y, s))(t — s)m j 1 DXqDiJG(x, t, y, s)dyds,
0 Kv( x 0 )

3 -  Roczniki PTM -  Prace Matematyc/no XXVIII
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(x, t)eD0 x(0, T], aJ = (a{, aï), p  ={${, ..., ft), p{ = ak + 2a{ (/ce/„), |^'| 
= |â) + 2a* — 2jr ( j e ï xJ. Consequently, to prove that the derivatives (4.11) are 
continuous at each point (x0, r), where fe(0, T], it is sufficient to show that 
the derivatives Dx LpJ (\Pj\ = |oc] + 2a* — 2j, je l^ )  are continuous at each
such point. For this purpose observe that, by the formulae Dx. UŸÏ 
= ( —1 )kDy.U\H (/e/„, 7' e / 2, k e N 0) and by the formula for integration by 
parts (see [12]), we have the equations

D*PL„ iJ x’ t; w>

= DK [ — f J / ( y . s ^ i y . s ^ t - s r - l - H D ^ D ^ G ^ f l D ^ d y d s ]
" ° AV*0> Г4

=  D * p M t i J x ’ w ^ ~ D ‘ p N f i J x ’ ' • w)’

where

g , = u ,+  i  ([/<:*>+
k= 1

M j (x, t; w) = J J D f (y ,  s, w(y, D%G,)dyds,
0 K„(x0 ) r =  1

r

NfKn(x, r; w)

= } j  / ( j ',s ,w ( j> ,s ) ) ( ( - s r - ''-1(£ '^ G ,) (n o ^ G r)cos(n,x,)rfff(),,!|,
О дк„(х0) r =  1

r ¥=q

(.x , f )e5 0 x(0, T], |/?j| = |5j-l-2a*-2/ ( je / â , Я is the exterior normal vector 
and d(Jiy s) is a surface element in Rn+1 taken with respect to (y, s). Since the 
derivatives DXpMpj^  DxpNpjfi (\Pj\ = |a| + 2a*-2 /;  ; e / aj  are of order at 
most 2m — 1, by analogous arguments as in the proof of Lemma 4.1 and as in 
the proof of Lemma 6.1 from [9] we obtain that the functions DXpMpjtf\
DXpNfijtj (\pj\ = |âl + 2a* — 2j; j e l a)  are locally uniformly convergent at each 
point (x0, t), where t e(0, T], and consequently are continuous at each such 
point. Therefore, the derivatives DXpXqD%t X°  (|а] + 2а* ^  2(m— 1)) are con­
tinuous in D.

To prove that the derivatives DtDx t X°  (|а| + 2а* ^  2(m— 1)) are con­
tinuous in D observe that, by assertion (c) of Lemma 4.1, we have

Dt Dl t X° (x , t ; w )

( ~ l ) w

(m — 1)! A

tt*
f (y ,  s, w{y, s))DsxDÏ*(t-s)m 1 G{x, t, y, s)dyds

L J J
0 D 0
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for (x, t)eD 0 x(0, T], |ô| + 2a* ^ 2 (m — 1). If a* = 0, then the formulae 
Dx. UŸi = ( — l)fc Dyi U\J}  (ii e l „ , j e l 2, k e N 0), the formula for integration by 
parts, and a similar argument as in the proof of the fact that the derivatives 
DXpXqDx,t X°  (|0] + 2а* <  2 (m—1); p, qG/J are continuous in D, imply that 
the derivatives DtDax t X°  (|а| +  2а* ^ 2(m—1)) are continuous in D. If а* Ф 0, 
then the Leibniz theorem on the differentiation, assertion (c) of Lemma 2.2 
and an analogous argument as in the proof of the case where a* = 0 prove 
that the derivatives Dt Dx t X°  (|à| +  2a3t! ^ 2(m— 1)) are continuous in D. 
Therefore the proof of assertion (A) is complete.

(B) Formulae (4.4) and (4.7) imply formula (4.8), and formulae (4.5) and 
(4.6) imply formulae (4.9) and (4.10), respectively.

5. Theorem on the existence of the quasi-(m)-regular solution of the (C”) 
quasi-linear problem. In this section we shall prove the theorem on the 
existence of the quasi-(m)-regular solution of the (C™) quasi-linear problem. 
For this purpose, we shall use Theorem 4.1 from this paper and Theorem 7.1 
from [9], and we shall apply the Picard method of successive approximations 
(see [11], Sections 72.1-72.3).

Theorem 5.1. Assume that:
(A) The functions Da' f  (a* e N q, |a‘| < 2m — 2i — 2, iEÎm- i)  are continuous 

and hounded in D0, and, additionally, the function f 0 is continuous in D0 and 
such that /o U 0 = 0.

(B) The functions f Jq ( ie ln, j e l 2, are continuous and bounded in
the domains Д  x(0 , Г], respectively, and the functions f i 0 (iel„, j e l 2) are 
continuous in the domains Dt x [0, T], respectively, and satisfy the equations

(5-1) f / 0 (xl, t) = 0 for (x \ t) g Zf u  (Д x {0}) (i e j e l 2).

(C) The function f ( y ,  s, z) is continuous for (y, s)eD, zeR .
(D) The functions df (y, s, г)/ду( (ie/„), df (y, s, z)/dz are continuous for 

(y, s) e D, z e R.
(E) The function f  satisfies the Lipschitz condition

l/(y , s, z ) - f ( y ,  s, z)I ^ L\z — z\ for (y, s)eD, z , z e R,

where

(5.2)

0 < L < [Xo(T)]"1 and
t

K 0(t):= 7- - - TTT ( ( t - s r - ^ l + ^ - s ) ^ 2)"^ for t e [0 , Г]. 
(m — 1) ! j

о

Then the function

v(x, t) = lim vt {x, t) for (x, t)ED,
i-*oo

(5.3)
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where

v0(x, t ) -  J J f ( y ,  s, Vi(y, s))Gm(x, t, y, s)dyds 
о d0

for (x, t)eD 0 x(0, T], i e/V0,
О for (x, t )eS 0, i e N 0,

and v0 is the (m)-regular solution in D of the (Cm) linear problem from [9], is 
the quasi-(m)-regular solution in D of the (Cf) quasi-linear problem.

Proof. First, we shall prove that the function v given by formulae (5.3) 
and (5.4) is quasi-(m)-regular in D. Since, by Theorem 7.1 from [9], the 
function v0 is (m)-regular in D, and since, by assertion (A) of Theorem 4.1, the 
functions vt (ieN)  are (m)-regular in D, so to prove that the function v is 
quasi-(m)-regular in D it is sufficient to show that

(5.5) r,-(x, t) v(x, t) for (x, t)eD
i  -M X)

and

(5.6) Dx'tvfx, t) ZZ D*x,tV{x,t) for (x, r)eD,
i  -M X)

where a = (a , a*), S e N q, 0 < |a| + 2a+ ^ 2m — 1.
Observe now that for an arbitraty fixed natural number к

fc -1
vk(x, 0  = £  (*>/+i(x, t ) - v t{x, t)) for (x, t)eD

i=0
and

(5.4) vi + 1(x ,t)  =

к -  1
D*Xtt vk( x , t ) =  £  (DaXtt Vi + ! (x, t)- D*x,t Vi(x, t)) for (x, t)eD,

i =  0

where a = (a, a*), S e N l ,  ol̂ .e M0, 0 < |a| + 2a* ^ 2m—1.
Consequently, to prove conditions (5.5) and (5.6) it is sufficient to show 

that the series
CO

(5.7) £  (t>i + 1(x, r )-M x , 0)
i= 0

and

(5.8) £  (Dx t vi+1 (x, 0 -D*Xtt Vi (x, 0),
i= 0

a = (â, a*), SîeNo, a+6 iV0, 0 <  |<x] + 2a* <  2m — 1,
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are absolutely and uniformly convergent in the domains D and D, respect­
ively.

First, we shall show this assertion for series (5.7). To this purpose we 
shall prove that

(5.9) |ci+1(.x, r)-D,(x, 01 «  M K 0(T)(LK0(T)f for (x, I)6 D, ieN „, 

where M =  sup \ f (x ,  t, r0(x, r))| (2).
(x,t)eD

If (x, t)eD 0 x [0}, then formulae (5.9) are a consequence of formulae
(5.4). Therefore, it is sufficient to prove that

(5.10) \vt+1(x, t ) - v t (x, t)\ ^  M K 0(T)(LK0(T)J

for (x, t)eD 0 x(0, T], i e N 0.
For i =  0 the above inequalities are a consequence of formulae (5.4), 

(2.2H2.4) and of inequalities (b) and (d) from Lemma 2.1. Indeed,

K(X, 01 = IJ f f ( y ,  s, v0(y, s))Gm(x, t, y, s)dyds\ ^ M K 0(T)
о d0

for (x, t)eD 0 x(0 , 7^.

Assume now that for an arbitrary fixed natural number i

IMx, 01 ^ M K 0(T)(LK0(T)y~l for (x, t) e D0 x (0, Т].

Then formulae (5.4), the Lipschitz condition from assumption (E), the above 
inequality, formulae (2.2)-(2.4) and inequalities (b) and (d) from Lemma 2.1 
imply that

t

|yi + 1(x, t)-Vi{x, t)I ^ LJ f IViiy, s) — Vi-! (y, s)||Gm(x, t, y, s)\dyds
о D0

^LM Xo(T)(LK0(T))i- 1} J IGm(x , t ,y ,s ) \d yd s
0 d0

^ М К 0(Т)(ЬК0(Т))1 for (x, t)eD 0 x(0, Т].

Therefore, by the mathematical induction principle, estimations (5.10) 
are true. This completes the proof of estimations (5.9).

Estimations (5.9) and formula (5.2) imply that the series (5.7) is absolute­
ly and uniformly convergent in the domain D to the function v(x, t) and so 
the sequence ju;(x, t)}ieNo is uniformly convergent in D to this function,
which is consequently continuous in D.

Now we shall prove that the series (5.8) are absolutely and uniformly

(2) M < oo since, by assertion (C) of Theorem 5.1 and by Theorem 7.1 from [9], the 

function f ( x ,  t, v0(x, 0) is continuous in D.
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convergent in the domain D. To this purpose, observe that by formulae (5.4), 
by the Lipschitz condition from assumption (E), by inequalities (5.9), by 
assertion (c) of Lemma 2.2 and by inequalities (b) and (d) from Lemma 2.1, 
we have
(5.11) I D l t vi + A x , t ) - D l tVi{x,t)\

t
^  L f  f I Vi (y, s) -  Vi _ ! (y, s)| IDaxt Gm (x, t , y , s)| dy ds

O Bn

«  L M K q(T)(LKq(T)J~1 f f \rrxJGm(x, t ,  y ,  S ) l d y d s
0 D0

M (L K 0(Tff  I  t

where

J
D0

ds

M (L K 0(T ) fK a(t),

a*! (ar + 2^)/2
^  ... . n , Z  ( i - s )” " ' -1 П  [(<-*) ' +А у ! ( т - 7 - 1 ) ! |й ,  /■ '• 'j r— 1

+ (f—s)1/2]rfs,

( x ,  t)eD, ieJS0, a = (â, a*), âeNÔ, a+ eiY0, 0 <  |àl + 2a3|t <  2m—1,

•̂ =  0
/I

Since m - j - 1 — j  £  (ar +  2$) ^ m - j - 1 -^ ( 2 m - 1 - 7) =  - 5 , we have
r =  1

АГа (Г) <  ( T) for te(0,  T], a =  (а, а*), осеЩ,  a* e/V0, 0 < |ô l  + 2a!)E
< 2 m - l .  Therefore, by inequalities (5.11), we obtain

(5.12) io ii» i+ i (x, t ) - D l , Vi(x, t)| MK,(T)(LK„(T)Ï

for (x, t)eD, iejV0, a = (â, a*), ôleN q, ol̂ e N 0, 0 < |â| + 2a* < 2m — 1.
Inequalities (5.12) and formula (5.2) imply that the series (5.8) are 

absolutely and uniformly convergent in the domain D to the functions 
D%t v(x, t) ( a  = ( â ,  a*), aeiVô, a* e N 0 , 0 < |a| + 2a* ^ 2m - 1), respectively, 
and therefore the sequences \Dax t yf (x, t))ieNo are uniformly convergent in D to 
these functions, respectively, which are consequently continuous in D. This 
completes the proof of assertion that the function v given by formulae (5.3) 
and (5.4) is quasi-(m)-regular in D.
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Observe now that formula (5.5) and assumption (C) imply that the 
function v satisfies the equation

Hence, by Theorem 7.1 from [9] and by Theorem 4.1, the function v 
satisfies the (C quasi-linear problem.

Consequently, the function v given by formulae (5.3) and (5.4) is the 
quasi-(m)-regular solution in D of the (C quasi-linear problem.

6. Theorem on the existence of the quasi-(m)-regular solution of the (C™) 
quasi-linear problem. In this section we shall prove the theorem on the 
existence of the quasi-(m)-regular solution of the (C™) quasi-linear problem. 
For this purpose we shall use Theorem 5.1 and Lemma 2.3.

T heo rem  6.1. Assume that:
(A)-(E) The functions Fi ( ie ^ .j ) ,  F{q j e l 2, q e l m- 1) and F satisfy 

assumptions (A)-(E) of Theorem 5.1 instead of functions f  ( ie lm-i), f \ q (ie /„ , 
j e l 2, qelm -i)  and f  respectively.

Suppose, moreover, that:
(F) c is a continuous function on the interval [0, T] such that the 

derivatives c(i)(0) = 0 ( ie /m_2, m ^  2).
Then the function

v0(x, t) -  j' )' f ( y ,  s, v{y, s))Gm(x, t, y, s)dyds

v(x, t) —
0 D0

for (x, t) eD0 x(0, T],

(6.1)

where
(6.2) v(x, t) = lim v f  x, t) for (x, t)eD,

и (x, t) = y (t) v (x, t) for (x, t)eD,

(6.3) vi + l (x,t)

v0{x, 0 -  f |“ (y(s)) 1 F(y, s, y(s)Vi{y, s))Gm(x, t, y, s)dyds
0 Dq

for (x, t)eD 0 x(0, Г], i e N 0,

V
(6.4)

(6.5)

y0(x, t) = ^ (x , t) + v2(x, t) for (x, t)eD,

v1 (x, t)
( m-\ i .

Z  Z  ( -1 Г М  J .!' * F i- j (y)Gi + 1(x , t ,y ,0 )d y

L o

for (x, t)eD 0 x(0, Г],
for (x, t) eSq,
for (x, t)EdD0 x jO),
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n m- 1 _
(6.6) v2(x, 0 = Z  Z  *) + *&(*» 0) fo r ( x , t ) e D ,

i= 1 k=0

(6.7) i*k(x,f)

-  2tfj J J (y (s))"1 F/>k (У, s) Dy. G* +1 (x, t, y, s)| 1)Jc. dÿ  ds
0 Df 1 1

for (x , t )e (D x (0, T])\S/, 

G/>k (x\ t) far (x, t)eS{,
0 for (x, t) eS0

for i e/„, j e l 2, k e ï m_ u

(6.8) G(k(x \t)

I (y(0) 1 Но(*> О / ог (**» 0 eDi x (°> T]> * e1n, j e ! 2, к = О,
I 0 for (x \ г)еД  x(0, T], ie/„, j e l 2, fce/m- i ,

and y is the function defined by formula (2.5), is the quasi-{m)-regular solution 
in D of the (C™) quasi-linear problem.

Proof. We shall seek the quasi-(m)-regular solution in D of the (C™) 
quasi-linear problem in the form

(6.9) u(x, t) = y{t)v(x, t) for (x, t)eD,

where y is the function given by formula (2.5) and v is a quasi-(m)-regular 
function in D. By Lemma 2.3 and assumption (F), we obtain that if the 
function v is the quasi-(m)-regular solution in D of the (CJ) quasi-linear 
problem, where:

(6.10)

(6.11)

and

f ( x )  = F0(x)
Fi(x)

for x e D 0, i = 0, 
for x e D 0, iG/m_i,

А Ы ,  t)

( (y(0)_ 1 *) for (*'’ *) 6A- x [°» T\> * e l m J e l 2, Я = 0,
~~ ( (y(f))~1 F{tq(x*, t) for (У, t) е Д  x(0, T], i e/„, j e l 2, q e /m_ г

(6.12) f { x ,  t, z) = (y(t)) 1 F(x, t, y(t)z) for (x, t)eD, z e R ,
then the function u, given by formula (6.9), is the quasi-(m)-regular solution in 
D of the (С™) quasi-linear problem and vice versa.

To find the form of the function v we may apply Theorem 5.1 since 
functions (6.10H6.12) satisfy all the assumptions of Theorem 5.1. Indeed,



Fourier's first quasi-linear and linear iterated problems 41

formulae (6.10H6.12) and assumptions (AHE) of Theorem 6.1 imply assump­
tions (A)—(E) of Theorem 5.1, respectively. Particularly, by the following 
conditions:

T

sup I./&K exp(|'c(s)ds) sup |F/>k| ( ie ln, j e l 2, k e l ^ J ,
Dt x(0,T] 0 »i *(0,T]

f t o(*\ t) = (y(t))~1F i0(xi, t) = 0 for (x‘‘, t)eZi u(Z), X JOJ) ( ie ln, j  g/2),

d f(y ,s ,z )  dF(y, s,y(t)z)
= 57------- ' for (y,s)eD, z e R  (ie/„),

fyi

¥  (У, s, z)
dz

-  (y (,))- = дП у ^ ; у Ш )  f o r ( y , s ) e 0 > z e R
dz d(y(t)z)

and

I f ( y ,  s, z ) - f ( y ,  s, z)I = (y(0) 11F(y, s, y{ t)z)-F(y , s, y(t)z)|

^ L\z — z\ for (y, s)eD, z, zeR ,

we obtain that the functions f j k ( ie ln, ./'e/2, /ce/m_ t) are bounded in 
Dt x(0, T], respectively, and satisfy equations (5.1), the function /  satisfy 
the Lipschitz condition together with the constant L from (5.2) and the func­
tions df (y, s, z)/dyi (i e l n), df {y, s, z)/dz are continuous for (y ,s ) e D , zeR .  

Then, by Theorem 5.1, we obtain that the function

(6.13) v(x, t) = lim Vi(x, t)
i -+00

for (x, f)eZ),

where

(6.14) и+

t
V0(x, t ) -  f f /(y ,  s, Vi{y, s))Gm(x, t, y, s)dyds

Q D0

for (x, t) eD0 x(0, Г], i e N 0,

. 0 for (x, t) eS0, i eN 0,

(6.15) v0(x, t) = ^ (x , t) + v2(x, t) for (x, t)eD,

■
m - l  « л
I  К - 1 У - '  )i= 0 j= 0 V/

1' Ajfi-j(y)Gi + i (x, t, y, 0)dy
°Q

(6.16) IIa for (x, t) eD0 x ( 0 ,  T],

/oW for (x, t) eS0,

.0 for (x, t) e dD0 x 10),



42 L. Byszewski

(6.17)
n w — 1

v2(x, f) = Z  Z  (VL(-X, t) + vlk{x, г)) for (x, t) eD,
i = l  k =  0

(6.18) v>ik (x,t)  =

-  f f f{ k (У, s) Dy. Gk + l (x, t, >>, s) | c dÿ  ds
0 Dj 1 1

for (x, t)e{D0 x(0, 7 ])\S /, 

^/д(х\ 0 for (x, t) eSj,
0 for (x, t) eS0

for i e l n, j e l 2, /се/т _! and 

(6.19) 0/,k(-x\r)

\ fiio(x', 0 for (xf, г) еД- x(0 , Г], i e l „, j e l 2, к = 0,
I 0 for (x‘, г)еД  x(0, T], i el„, j e l 2, k e l m_ u

is the quasi-(m)-regular solution in D of the (C™) quasi-linear problem, where 
the functions f f k, f { k (ie 1 „ , je l2, A:e t) are given by formulae (6.10H6.12).

Consequently, by formulae (6.9), (6.13H6.19) and (6.10H6.12), we get 
that the function и given by formulae (6.1H 6.8) is the quasi-(m)-regular 
solution in D of the (C™) quasi-linear problem.

7. Theorems on the existence of solutions of Fourier’s linear iterated 
problems.

7.1. Theorem on the existence of the (m)-regular solution of the Fourier’s 
first linear iterated problem of type (CJ?). As a consequence of Theorem 4.1 
from this paper, Theorem 7.1 from [9] and an analogous argument as in the 
proof of Theorem 6.1 from this paper, we obtain the following:

T h eo rem  7.1. Assume that asumptions (A), (B) and (F) of Theorem 6.1 are 
satisfied. Suppose additionally that the function F(y, s) is continuous for 
(y ,s)eD  and the functions ôF(y,s)/ôyi (ie /„) are continuous for (y,s)eD. 
Then the function

(7.1) u(x, t) = y(t)v{x, t) for {x, t)eD, 

where
3 _

(7.2) v(x, t) = Z  v4x, t) for {x, t)eD,
i = 1

the functions v1 and v2 are defined by formulae (6.5H6.8) and
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V3(x, t)

-  f f (y(s))_ 1F(y, s)Gm(x, t, y, s)dyds for (x, t)eD 0 x(0, Г], 
о d0

0 for (x, t) eS0,

is the (m)-regular solution in D of the (Cp) linear problem.
Remark 7.1. If all the assumptions of Theorem 7.1 are satisfied for m 

= 1, then Section 22.7 from [10] or Theorem 2.1 from [3] imply that the 
function и given by formulae (7.1) and (7.2) is the only one (l)-regular 
solution in D of the (C£) linear problem.

Remark 7.2. If c(t) =  0 for t e[0, T], then Theorem 7.1 and Remark 7.1 
refer to the Fourier’s first linear iterated problem of type (C™).

7.2. Theorem on the existence of a solution of Fourier's second linear 
iterated problem of type (Cj?). For all xeR", y e R n, 0 ^  s < t ^  T  and for 
every fixed natural number q we define the function Gq by formulae (2.2),
(2.3) and

(7.3) GfXi, t, yh s)

= UfXi, t, y{, s)+ X (tf&Hxi. U Ун s)+ l/!J(*i» f, Ун «)),
k =  1

where the functions 17,, (7$ (/e/„, j e l 2, keN )  are given by formulae (2.1).
Applying similar arguments as in papers [4], [6]-[9] and in this paper, 

and using results from [5], we obtain the following theorems:
T heorem  7.2. Let q be an arbitrary fixed natural number, and let Gq be 

the function defined by formulae (2.2), (2.3) and (7.3). Then:
(A) The function G9( x , t , y , s ) and the derivatives D*x tGq(x, t, y, s), 

Dy SGq(x, t, y, s) (a eJ\o+1, |a| Ф 0) are continuous for all (x, t)eD 0 x(0, T], 
(y, s)eD, s < t.

(B) PkXttGq(x, t, y, s) = PkysGq(x, t, y, s)

i Gq k(x, t, y, s) 
(0

for к = 0, 1, ... ,  q -  1, 
for k = q, q+1, ... ,

where (x, t)eD 0 x{0, T], (y, s)eD, s < t.

(c ) K j  Dx. Gq(x, t, y, s) = 0 for (x , t) eSj (i el„, j e l 2, к e/V0), (y, s) eD, 
s < t.

(D) limDf*G*(x, t, y, s) = 0 for (x, t) eD, (y, s) eD, x Ф y, s < t

(k e h-i) -  1
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Theorem 7.3. Assume that:
(A) c is a continuous function on the interval [0, T], T < оо, such that the 

derivatives c(,)(0) = 0 (1бГт _ 15 m ^ 2), у is the function defined by formula
(2.5), and the functions G' (i'e/„) are given by formulae (2.2), (2.3) and (7.3).

(B) The functions D*1 Ft (tx'eNo, |a‘| <  2m — 2/ — 2, z £/„,_!) are continuous 
and bounded in D0.

(C) The functions F{q (ie /„, j e  / 2, <?e/m_i) are continuous and bounded 
in the domains Д  x(0, Г], respectively.

(D) 77ie function F(y, s) is continuous for (y, s)eD and the functions 
dF(y, s)/3y( (i e l n) are continuous for (y, s)eD.

Then the function и of the form
3

u(x, t) = Z  u fx ,  t) for (x, t)eD,
i=  1

where
m — 1 i .

и '(х , 0 = Z  Z  ( ~ 1)i~j ( l.jy(0  J 4 JFi-j(y)Gi+1(x, t, y, 0)dy,
i~ 0 j = 0 '7 /  Do
il m— 1

a2(x, t) = Z  Z  (ulk(x, t) + u?tk(x, t)),
i= 1 k= 0

uik (x, t) = - 2a, y(f) j‘ f (y(s)) 
Ь D;

1 F/,* ( / ,  5)Gk+1 (x, J, s)| dy
У£= ( — 1)ус,-

и3(х, f) =  -y (f) f f (y(s)) 1 F(>>, 5)Gm(x, t, y, s)dyds
0 D0

is continuous together with the derivatives Dx tu (a = (à, a*), S e N q, ol̂ gN0, 
0 < |a| + 2a* <  2m) in the domain D and satis fies the following Fourier's second 
linear iterated problem of type (C™):

Pmu(x, t) = F(x, t) for (x, t)eD,
D’fu fx ,  t) = Fk(x) for (x, t )eS 0, /ce/m_l5

pbDx.ufx, t) = F{k(x‘', t) for (x, t)eSf, ie1n, j e l 2,
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