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On Fourier’s first quasi-linear and linear iterated problems
and on Fourier’s second linear iterated problem
in the (n+ 1)-dimensional time-space cube

Abstract. Constructions of solutions of the Fourier’s first quasi-linear and linear iterated
problems and a construction of a solution of the Fourier’s second linear iterated problem in the

domain ( X (—¢;, ¢))x(0, T], T-< oo, are given.
i=1

1. Introduction. In this paper we construct solutions of the Fourier’s first
n

quasi-linear and linear iterated problems in the domain D =( X (—¢;, ¢)) X
i=1

x(0, T], T <o, and we construct a solution of the Fourier’s second

linear iterated problem in D. For this purpose we use the Green’s method,
the method of heat iterated potentials, the Picard method of successive
approximations and a similar transformation to H. Blook’s transformation
from [10]. To construct the solutions of the problems considered, we use
[4]-[9]. This paper is a continuation of those papers and bases mainly on
[9]. We may apply [6]-[8] since all the results given in those papers in the

domain (X( ¢is ¢)) x(0, T), T < oo, hold also in the domain D.

The results obtained here contain the results from [1], [2], [4], [5], [9]
and [14]. The results of this paper are direct generalizations of those given
by the author in [4], [5], [9], indirect generalizations of those given by
Baranski and by Musiatek in [1], [2], and generalizations and indirect
generalizations of those given by Milewski in [13] and [14], respectively.

2. Preliminaries. Throughout the paper we use the following notations:
R.=(—,0, R,=(0,x©), R=(—c0, o),
={1,2,...}, No=Nul{0},
R'=Rx...xR,. Nj=Ngx...xNy, (ntimes),
L=11,2,..,n, I=1U{0 (neN),
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X=(Xy5.e0s Xp)y Y =15 .05 Va)s
xi=(x1,..., Xi—1> x,'+1,..., x,,) (ie',,),

xi’j =(x1, ooy Xie1s (—l)jci, Xit1y enes X") (ieln’ jE’Z)’

D, = X(_ci’ (AR 6D0=50\D0, So = D¢ x |0},
i=1

=k=Xl(—Ck’ ck) (iE’n ’
k=i
Di =(—cy, ) x ... x(—¢€i_y, Ci-y) X :(—l)jci} X(=Civ1s Civ1) X ...
. X(—'C,,, cn) (ieln,jEIz),
D=Dyx(0, T], Si=Dix(0,T), 8§ =Dix(,T],
T<w (i€l, jel,),
Z; = 0(D; x[0, TP\ {(¥', 1): t =0}  (iely),

Px,t = Ax—Dn Py,s = Ay+Ds9 ﬁx,t = Px,t_c(t)’ a= H a;,

where 4, = Y g Dii, ¢ is a function defined on the interval [0, T] and q; eR.
i=1

for iel,.
By 4%, P‘;,, P%, and P%, we denote the k-iterations of the operators 4,,
P, P,, and Px,, respectxvely As long as it does not lead to misunder-

standmg, the operators 4,, P,,, P,, and Px . will be denoted by the sym-
bols: 4, P, P and P.

n n
For each o =(ay,...,%)END, xeR" we put: Ja| = ) o, a!=[]a!,

a* = ]_[(al)‘ and D% =D.\..D;". Moreover, D3, :=D}D{, where

o —-(a a,,), aeNg, a, €Ny, xeR" and t [0, T].
We assume that m is an arbitrary fixed natural number.
We consider here only real functions and we use the concept of local
uniform convergence of considered integrals in the sense of [12].
Let a,eR, for iel,. For every fixed index iel, we define the function
U: R*\{0} —» R by the formula
{(4na,»1:)'”2exp(—(4air)"162) for £eR, teR,,
2, t;a)=
0 for £eR, teR_ or (eR\{0}, 1=0.
Now, for all xeR", yeR", 0 < s <t, iel,, jel, and ke N,, we define the
functions UY), U; by the formulae
U:g'.il)c(xi’ t, Yis S) a”(yn Xi, k’ -5 ai),

U (xn Ly Yis S) = i,O(xis t Vi, 5),
where x{ = (—1)*(x;+(— 1Y 2key).

(2.1
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Next, for every xeR", yeR", 0 < s <t < T and for every fixed natural
number g, we define the function G? by the formula

22 Gi(x,t,y s)=(_1)q_l(t—s)""lG(x t,y, ) |
. b Y b (q—l)! b b , 2
where
(2'3) G(x’ t’ y, S) = n Gi(xi’ L, Yis S),
. i=1

(24)  Gi(x;, t, ¥, 9)
= Ui(xl" [9 yia S)+ Z (_l)k(U},lk)(xia ta yi’ s)+Ul{,2k)(xi’ ts yi$ S))
k=1

and the functions U;, UY) (i€l,, jel,, keN) are given by formulae (2.1). If
g =1, then we apply the symbol G in place of the symbol G'.

In the sequel, we shall need the following lemmas:

LemMa 2.1 ([6]). Let 0<s <t, aeNy, ¥ > —1 and iel,. Then there
exist positive constants A, and B,, such that

(@) IDF U, t—5; @)l < A (t—35)"" D2 for LeR,

(b) [IDFUE, t—s, a)dE < \/8nA A (t—5)"%?, where A =maxla,...
R

ooy Gyl

©) IDF U, t—s;5 a)l < B, [EI7* 7" (t—s)? for £eR\{0}.

Particularly,

(@) D3, UBL(xi t, yiy )l S (2e)7* 7% Hk=1)7*"* "1 B, , (t—s)*  for x
yiel—c;, 6], jely, ke N\{1}.

LemMma 2.2 ([7]). Let q be an arbitrary fixed natural number, and let G
and G? be the functions defined by formulae (2.2)H2.4). Then:

(@) The function GU(x,t,y,s) and the derivatives D2,Gi(x,t,y, s),
D5 G(x, t, y,5) (e NG, | # 0) are continuous for all (x, t)e Dy x(0, T],
(y, s)eD, s < t.

(b)  PLG'(x,t, 9,9

G *(x,t,y,s) for k=0,1,...,q—1,

=P’;‘qu(x,t,y,s)={0 for k=q,q+1, ...

where (x, t)eDy x(0, T}, (v, s) €D, s <t.
o,!
© DHG(x,t,y,8) = jaﬁDi”G(x, t, ¥, 9),
BeNg T
|Bl=a,
where (x, t)eDy x(0, T, (v, s)eD, s <t and a, is a natural number.

(d) P, GU(x, 1, y,5) =0 for (x,)eS] (iel, jely, keNo), (v, s)eD, s <t.



26 L. Byszewski

(&) P5,D, G'(x,1, ", 5)=0 for (x,0€8 (,pel, jrel, keNy),

(v, s)eD, s <t. _ ~
() imDfGi(x, t, y, s) =0 for (x,t)eD, (y, s)eD, x #y, s <t (kel,_).

st
In this paper we shall denote by C and C the following constants:
C=( max {3./8m4A4;;2(Q2c)™/"'B;; Y k™?}),
ielpjelym— 1 k=1
~ . ©
C=( max [34;2Q2c¢)™'"?B;, Y k™)),
ielpjelym-2 =1
where A4;, B;, (jel,,—,) are the constants from Lemma 2.1.
Now we shall prove the following:

LemMMmA 2.3. Assume that ¢ is a continuous function in the interval [0, T],
T < o0, y is the function given by formula

t
2.5 y(t) = exp(— fc(r)dr), te[O, T],
0
and Q = Q, x(0, T], where , is an arbitrary domain in R". Then:
(@) If v is a function such that there exist the derivatives D, v (a = @, ay),
deNg, a, €Ny, 0 <|a]+20, < 2i, ieN) in Q, then
2.6) Por0o(x, 0) =90 Polx, 1)
Jor (x,)eQ, kel;, ieN.
(b) If v is a function such that there exist the derivatives Div (iel,_,) in
Qo x{0) and if there exist the derivatives ¢”(0) =0 (rel,_,, m>2), then
(2.7) Df(y(t)v(x, 1)) = Dfv(x, t)
for (x, )€ Qo x {0}, kel,_,.
Proof. (a) Put i = 1. Then
P(y(0o(x, 1)
=y d;v(x, )+c@yO)v(x, )=y D, v(x, )—c(®)y(@)v(x, 1)
=y({)Pv(x,t) for (x,1)ef.

Suppose that for an arbitrary fixed natural number i formulae (2.6) hold.
Consequently
Pri(y@o(x, 9) = P(y(@) Prolx, 1)
=y(0) 4 P o(x, 1) +c (@) y () Pro(x, ) —y(©) D, Pro(x, ) —c () y (1) P*o(x, t)

=y() P o(x, 1) for (x, )eQ, kel,.
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Then, from the mathematical induction principle, assertion (a) is true.
(b) By the Leibniz theorem

k-1 k

DE((O0(x, 0) = ¥ ()DEI7@DivCe, 0+ Dhox, 0

j=0
for (x, )e 2y x {0}, kel,,_,, m>2.

Since the derivatives Diy(t) (jel;, kel,_,, m > 2) are linear combina-
tions of such products that at each of them there is at least one derivative of
the form c¢”(t) (rel,-,, jek, kel,_,, m>?2), it follows that, by the
equations ¢”(0) =0 (rel,_,, m > 2) and y(0) = 1, the proof of assertion (b)
is complete.

3. Formulations of Fourier’s first quasi-linear and linear iterated problems
of type (C7) and (C®. A continuous function u in D is called a quasi<(m)-
regular [(m)-regular] in D if the derivatives D}, u (x = (&, a,), ¥ €N, a, €Ny,
0 <lja]+2a, <2m—1 [< 2m]) are continuous in D.

Given the functions f; f, f (iel,, jels, kel,_,), Fourier's first quasi-
linear [linear] iterated problem of type (C7) in D consists in finding a quasi-
(m)-regular [(m)-regular] function u in D, satisfying the equation

(3.1 Pru(x, t) = f(x,t, u(x, 1) for (x,t)eD
[(3.1) P"u(x,t)= f(x,t) for (x,t)eD],
satisfying the initial conditions

fO(x) fOI' (xa t)e§05 k = 0,

(3.2 - Diu(x, i) = {ﬁ‘(x) for (x, )€ Sy, kel,

and satisfying the boundary conditions
Fo(d, 1) for (x,0)€8], iel,, jely, k=0,
G 1) for (x,t)eS, i€l,, jel,, kel,_,.

(33)  Pru(x,t) = {

A function u with the foregoing properties is called a quasi-(m)-regular
[(m)-regular] solution in D of the above problem, and this problem is called
shortly the (C}) quasi-linear [(C7) linear] problem. _

Given the functions F, F,, Fi, (iel,, jel,, kel,_,), Fourier’s first
quasi-linear [linear] iterated problem of type (C%) in D consists in finding a
quasi-(m)-regular [(m)-regular] function u in D, satisfying the equation

(3.4) Pmu(x, t)y=F(x,t, u(x,t)) for (x,1)eD
[(3.4) P"u(x,t)=F(x,t) for (x,t)eD],
satisfying the initial conditions

Fo(x) for (x,t)eS,, k=0,

35 k =
.9 Diutx, 1) {Fk(x) for (x, t)€S,, kel,_,
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and satisfying the boundary conditions

F'ii,()(xi’ t) for (X, t)ES_{, ie’,,, jelz, k = 0,

08 Fulx ”={F.{k(x‘,t) for (x, e S), icl,, jely, keln_, ().

A function u with the foregoing properties is called a quasi<(m)-regular
[(m)-regular] solution in D of the above problem, and this problem is called
shortly the (CF) quasi-linear [(C¥) linear] problem.

4. Properties of heat volume iterated potentials. Let

t
4.1) X*(x, t; w) = [Y*(x, t, 5; w)ds,
0
where _
42 . Y tssw=— | f(y,s w,9))D;, G (x,t, y, s)dy,
Do

w = w(y, s) is a function defined for (y, s)e D, f is the given function, G™ is
the function given by formulae (2.2)(24), « = (&, a,), & =(a;, ..., )€ N},
o, €No.

The integral X° is called the heat volume iterated potential of the
domain D.

LEMMA 4.1. If w = w(y, s) is a function defined for (y, s)e D and such that
the composite function f (y, s, w(y, s)) is measurable and bounded in the domain
D, then:

(@) The integrals X* (|} + 20, < 2m—1) are locally uniformly convergent
in the domain Dy x(0, T]. Moreover, the integrals Y* (|& + 2, < 2(m—1)) are
locally uniformly convergent, as the functions of the variable (x,t), in the
domain Dy x(0, T].

(b) lim Y°Ul(x, t, s; w) = 0 for (x, t)eDy x(0, T], 0< s <t, where afr]

st
=, a,—r—1), reL'_l, o, €N, 0 <o} + 2a, < 2m.

(c) For every point (x,t)eDy x(0, T] there exist the derivatives D%, X°
(0 <)d]+2a, <2m—1) and D%, X°(x,t;w)=X(x,t;w) (0 <|al+20, <
2m—1) for all (x, 1)eDqy x(0, T].

Proof. (a) To prove this assertion for the integrals X* (ja]+2«, <
2m—1), let us fix a multi-index o = (&, a,) such that |@]+2x, < 2m—1 and
observe next that by the Leibniz theorem on the differentiation and by
assertion (c) of Lemma 2.2 we obtain the equation '
(=", ! 22 (m—1)(m=2)...(m—j) a .

. Z Z &T!_ij(x’ L W)s

X2 (x, 1;w) = .
(m=D! = jt o) =a, =

(') The left-hand sides of equations (3.2), (3.3), (3.5) and (3.6) arc meant in the limit sense.
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where

t
Lj(x, t; w) = .;j; Df f(y, s, w(, )t—s" "' D¥ G(x, t, y, s)dyds,
0

(x,)€Do x(0, T), &/ = (&, ..., c0), B =(Bl, ..., i) Bl =ou+2f (kely), |

= @]+ 20, —2j (jel, ) Consequently, to prove the first part of assertion (a),
it is sufficient to show that the integrals Iﬁ, (1B = &) + 2, —2j, jel) are
locally uniformly convergent in the domain Dy x(0, T]. For this purpose,
observe that by assertions (b) and (d) of Lemma 2.1

Uy (x, ;W) < CSUPIf! @,(1)  for (x, )e Do x(0, T1,

where

t n .

90 = [e=sy" I [T [t—9) "2 +(t~5"*] ds,
4] r=1

B =Bl ..., B) 1B = I8 +22,—2 (jel,). Since m—j—1—4Ip/ >} (jel,),

the integrals ?y (B = & + 200, ~2j, j €l,) are the sums of the finite number

of the mtegrals
t

ds
— (<1
Jo=gr =D
(V]
Therefore, the integrals I pi (8] = |+ 20, — 2j, je Z,) are locally uniformly

convergent in the domain D, x(0, T (see [10], § 59.4), and by the fact that
the multi-index a is arbitrary the proof of the first part of assertion (a) is
complete.

To prove assertion (a) for the integrals Y* (|&] + 2o, < 2(m—1)), let us fix
a multi-index a = (&, «,) such that |+ 2, < 2(m--1) and observe that as in
the proof of the first part of assertion (a) we obtain the equation

(=)"a,! & (m=1)(m=2)...(m—j) @

e t’s;w)=_ (m—1)! J;o J! |ai|=z£.—,°¢’! Tpi(x: £, 53 W),
where
43) J(x, 5w = [ £ s w0, =" DYG(x, 1, y, 5)dy,

Do
(x,)eDy x(0, T], 0<s<t, &/ =(f,...,0d), BF=(B,.... B, Bi=oy+20f
(kely, |/} =1a) +2a* —2 (jel, 2)- Consequently, to prove the second part of
assertion (a), it is sufficient to show that for arbitrary fixed j el, and T>0
such that 0 <s+ 7T <t < T the integral {pl (Ip) = |o'z'|+2a*—2]) is locally
uniformly convergent in the domain Dg x(7, T]. For this purpose let x, be
an arbitrary fixed point belonging to the set Dy, ¢ be an arbitrary fixed
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positive number and K, (x,) be a sphere with the center x, and a radius #.
Now, by assertions (a) and (d) of Lemma 2.1, we have
IK 55, 0, 1, 55wl < Csuplfly;(t—s) | dy
D K (x0)
n\*o
for (x, )e Dy x(0, T], 0< s <t,

where

Ky tssw= [ f(rsw(9)e—9" " DYG(x, 1, y, 5)dy,

Dor\K,’(xo)
n .
. — (g’
Yot —s) = (=" 7 [T [t=9)" @2 (=52,
r=1

B =, ..., B), |p| =&+ 2, —2j. Therefore

e
[1LT- g T2,

K5, (xs £, 55 w)| < Csup|f| T"7I71
’ D r=1

where (x,t)eDy x(T, T], 0<s+T <t and 1, is the volume of the n-
dimensional unit sphere. If # satisfies the inequality

€ 1/n
’1 < n j ’
C,suplf| T~ 1 [] [T+ V2 U2y,
D r=1

then
|Kﬂj’"(x, t,s;w) <e for (x,0)eDy x(T, T], 0<s+T <t.

Since the multi-index a, the index j, the point x, and the number T are
arbitrary, it follows that the proof of assertion (a) is complete.

(b) Let us fix a multi-index o =(&, «,) such that a,eN and 0 <
o] + 20, < 2m. By the Leibniz theorem on the differentiation and by
assertion (c) of Lemma 2.2, we obtain the equations

Y (x, t, s; w)
_(—I)M(a*—r-—l)!’*"'l(m—l)(m—-Z)...(m—j) N
B (m—=1! =0 J!

a”
X Z Ejﬁj(x, t, s, W)’

|aj|=a‘—r-j— 1

where J,; are given by formula (4.3), (x,?) €Dy x(0, T}, 0<s<t, o
'=(O!{, T (X{;), Bj =( {, (AR B{J), :Bllc = ak+2¢x,{ (kEIn)’ Iﬂjl = l&|+2a*—2r—
—2j=2,j ei,,*_,_l, r eia‘_ 1. Simultaneously, by assertions (b) and (d) of
Lemma 2.1, we have
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Uys(x. £ 53w < Csuplf1a=9m 7 [L =97 +(=9"7],

r=1

where (x,1)€Dox(0, T), 0<s <t, B/ =(Bi, ..., i), Bl=ou+2f (kel),
|#| = a1+ 20, —2r—2j~2, jel, —,—, r€l, -,. Consequently, assertion (b)
holds since m—j—1—3%|p/| = r+1 > 0and m—j—1+3n > 0 for all possible j.
(c) Arguing analogously as in the proof of assertion (iii) of Lemma 6.1,
given in [9], we obtain
a,—1
D2, XO(x, t; w) = X*(x, t; w+ Y, Di(lim Y (x, t, s; w))
r=0 st
for (x, )eDy x(0, T], & = (&, ), &€Np, a, €N, 0 <|&]+2a, <2m—1.
The above equations and assertion (b) imply assertion (c).
LemMa 4.2. If the assumptions of Lemma 4.1 are satisfied and if xo €Dy, is

an arbitrary fixed point, then the function X° given by formulae (4.1) and (4.2)

satisfies the equation
t

(4.4 PPIXx, t;w)=— [ [ f(y, s, w(,9)G(x, 1, y, s)dyds

0 Dy
Jor (x, t)eDy x(0, T,
the initial conditions
(45  DX°(x,t:w) =0, as (x,1) —(xe, 0%), (x,)€D, kel,_,
and the boundary conditions
(4.6) P X%(x,t;w) =0, as (x,0)eS, iel, jel,, kel,_,.
Proof. Equation (4.4) is a consequence of assertion (c) of Lemma 4.1
and of assertion (b) of Lemma 2.2.
Simultaneously, by an analogous argumentation as in the proof of
assertion (a) of Lemma 4.1, we obtain the following estimations:
Ck! * (m—D)(m-=2)...(m—j) - a
) - DI TRS
(m-1)! ! ol

j=0 lad] =k~ j

al

IDf X°(x, t; w)l <

t
xsuplf] |@—sy=7* [T [e=9)"+@—9)"7]ds,
D 6/ r=1
where (x, )e Do x(0, T], kel,-,. Since m—j—1—|o/| >0 for jel, and
kel,_,, conditions (4.5) hold.
Conditions (4.6) are a consequence of assertion (c) of Lemma 4.1 and of
assertion (d) of Lemma 2.2.

Lemma 4.3. Assume that:
(@) The function f(y, s, z) is continuous for (y, s)e D, zeR.
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(b) The functions of (y, s, z)/0y; (iel,), & (v, s, z)/0z are continuous for
(y,s)eD, zeR.
(c) w is an arbitrary function continuous in D and such that the derivatives

ow(y, s)/0y; (iel,) are continuous in D.
Then the function

t

v(x, t;w)i=— [ [ f(y,5 w(,9)G(x,t,y, s)dyds

0 Dy
satisfies the equation
4.7) Pu(x, t; w) = f(x,t, w(x, t)) for (x, t)eD.

Proof. Let w = w(y, s) be an arbitrary fixed function with the proper-
ties from assumption (¢) and let

f,9):=1f(y,s,w(y,8) for (v, 9eD.
Hence, by assumption (a), the function f is continuous in D and since
A8 _ s, wl,9)  F s, w,9) iy, s)
;i ;i ow ay;
for (y, s)eD, iel,

it follows, by assumptions (b) and (c) that the functions oy (iel) are
continuous in D. Now, applying to the function f Szarski’s theorem (see [10],
p. 523), we obtain, by the fact that w is an arbitrary function, equation (4.7).

Tueorem 4.1. If assumptions (a)(c) of Lemma 4.3 are satisfied and if the
function X° is given by formulae (4.1) and (4.2), then:

(A) The derivatives D%, X° (l&]+2x, < 2m—1) are continuous in the
domain Dy x(0, T} and the derivatives D%, X° (|& + 2o, = 2m) are continuous
in D. If, moreover, X°(x,0;w):=0 for xeD,, then the function X° is
continuous in D. ,

(B) The function X° satisfies the equation

4.8) P X%(x, t; w)= f(x, t,w(x, 1)) for (x,t)eD,

the initial conditions

4.9) DEXO(x, t; w) =0 for (x,t)eS,, kel,_,

and the boundary conditions

(4.10) PrXOx,t;w)=0 for (x,0)e8l, iel, jel,, kel,_,.

Proof. (A) The continuity of the derivatives D%, X° (|a] + 2z, < 2m~1)
in Dy x(0, T] is a consequence of Lemma 4.1 and the continuity of the
function X° in D is a consequence of assertion (a) of Lemma 4.1 and of
conditions (4.5) for k = 0.
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To prove assertion (A) for the derivatives D%, X° (/& + 2u, = 2m), it is
sufficient to show that the derivatives Dxpxq D%, X° and D,D%, X° (la+
+2a, < 2(m—1); p, g €l,) are continuous in D. First, we shall prove that the
derivatives Dx,,x,, D%, X° (|&]+ 2x, < 2(m—1); p, qg€l,) have this property. To
this purpose let x, be an arbitrary fixed point belonging to the domain D,
and let K,(xo) be a sphere with the center x, and a radius » such that
K,(x0) = Do. By the fact that the function G™(x, t, y, s) and the derivatives
D%, G"(x, 1, y,5) (e Np™', |o) #0) are continuous for (x, t)e Dy x(0, T],
(v, s)eD, s <t and by the fact that

limD¥G™(x, t,y,s) =0 for (x,)eD, (y,s)eD, x#y, s <t, kel,_,

st

(see assertions (a) and (f) of Lemma 2.2), the derivatives

Do, Dil—1 [ S5 w(,9)G"(x,t,y, s)dyds]

0 Dg\K,(xq)
are continuous at each point (x,, t), where te(0, T]. Therefore to prove that
the derivatives D, x, D%, X° (|&] +2a, < 2(m—1); p, gel,) are continuous in
D it is sufficient to show that the derivatives

@1) D Di— ] | £ s w0, 9)G"(x, ¢, y, dyds]

V] K"(xo)
(lal + 20, < 2(m—1); p, q€l,)
are continuous at each point (x,, t), where te(0, T]. For this purpose fix a
= (&, ) such that |@]+2a, <2(m—1), fix p, gel, and observe that, by
assertion (c) of Lemma 4.1 and by an analogous argument as in the proof of
assertion (a) of Lemma 4.1, we obtain the equations

t ~—~

Dxpqu;,t[— J J f(ys S, W(y’ S))Gm(x, L, Y, S)dyds:l

0 K"(xo)

t

=Dx,,[—j f S, s, w(y, 9)D,, D5, G™(x, 8, y, S)ddeJ

0 K',(xo)

_(=D"a, ! & (m~1)(m~2)...(m—j)

)

C (m-D! 5, j!

a
el 2 271 Do gy (X5 15 W),
al|=a,—j

where

t .
Lyt = T F( 5 w0, )t =571 D, DY G(x, t, y, 5)dyds,
n'*0

3 —~ Roczniki PTM — Prace Matematycsne XXVIIT
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(x, DeDo x(0, T], &/ = (af, ..., ad), B = (B{, ..., Bi) Bl = o +20f (kel,), |F]
= | + 20, — 2 ( jeia). Consequently, to prove that the derivatives (4.11) are
continuous at each point (x,, 1), where re(0, T, it is sufficient to show that
the derivatives D,, Lﬁj’" (B = | + 20, — 2, jeL_) are continuous at each

such point. For this purpose observe that, by the formulae D, v
=(=1*D, UY (iel,, jel,, keNo) and by the formula for integration by
parts (see [12]), we have the equations

DxpLN”(x t;w)
=D, [~ [ 1 SOnswo, )~ 0D, G)(TT D%G,)dyds]
0 Kp(xq) ;z;

= DxpMBj’,’(x’ L W)_DxpNﬂj‘"(-x9 L W)

where

©
Z (1) (2)

t

My, (e tiw) = [ [ Dy [ (.5, w(, 9)t—97 5 04 G (I] DHG)dys,

0 K,(xq)
0 r#*q

N, e 5 w)

t ) n .
= j ‘f f(y’ s, w(y, S))(t“’s)mmj_l(Dg{; Gq)(n DifG,)COS(ﬁ, xq)da(y.S)’
r=1

0 0K, (xq)
0 r¥q

(x, )e Do x(0, TJ, |B) = |&] + 22, — 2j (]eI) 7i is the exterior normal vector
and do, is a surface element in R"*' taken with respect to (y, s). Since the
derivatives D pMﬁ,m; D pNﬁ » (1B = 18] + 20, — 2j; ]el) are of order at
most 2m— 1, by analogous arguments as in the proof of Lemma 4.1 and as in
the proof of Lemma 6.1 from [9] we obtain that the functions Dxp M B’

N iy (B = & + 20, — 2j; jeia) are locally uniformly convergent at each
point (x,, t), where t €(0, T], and consequently are continuous at. each such
point. Therefore, the derivatives Dxpxq Dz, X° (|&]+ 20, < 2(m—1)) are con-
tinuous in D.

To prove that the derivatives D,D%, X° (|&]+ 2, < 2(m—1)) are con-
tinuous in D observe that, by assertion (c¢) of Lemma 4.1, we have

D, D%, X°(x, t; w)

(——1

T m-1! U Jf Y, 5, w(y, ) DEDf+(t—s)" "1 G(x, t, y, s)dyds:|

0 Dy
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for (x,t)€Dy x(0, T], & +2a, <2(m—1). If a, =0, then the formulae
D, UY = (—1)D, U (iel,, jel,, keNo), the formula for integration by
parts, and a similar argument as in the proof of the fact that the derivatives
D, . D X° (|&]+ 2, < 2(m—1); p, qel,) are continuous in D, imply that
the derivatives D, D%, X° (|& + 2, < 2(m— 1)) are continuous in D. If a, # 0,
then the Leibniz theorem on the differentiation, assertion (c) of Lemma 2.2
and an analogous argument as in the proof of the case where a, = 0 prove
that the derivatives D,D%, X° (/& + 2, < 2(m—1)) are continuous in D.
Therefore the proof of assertion (A) is complete.

(B) Formulae (4.4) and (4.7) imply formula (4.8), and formulae (4.5) and
(4.6) imply formulae (4.9) and (4.10), respectively.

5. Theorem on the existence of the quasi-(m)-regular solution of the (C7)
quasi-linear problem. In this section we shall prove the theorem on the
existence of the quasi{m)-regular solution of the (C7) quasi-linear problem.
For this purpose, we shall use Theorem 4.1 from this paper and Theorem 7.1
from [9], and we shall apply the Picard method of successive approximations
(see [11], Sections 72.1-72.3).

THEOREM 5.1. Assume that:

(A) The functions D*f; (o €N%, lof| < 2m—2i—2, iel,_,) are continuous
and bounded in D, and, additionally, the function fy is continuous in D, and
such that fol:p, = 0.

(B) The functions f/, (iel,, jel,, qel, _,) are continuous and bounded in
the domains D; x(0, T], respectively, and the functions fJ, (iel,, jel,) are
continuous in the domains D; x[0, T], respectively, and satisfy the equations

5.1 fio(X, =0 for (x', )eZ,u(D; x{0}) (iel,, jel,).

(C) The function f(y, s, z) is continuous for (y, s)e D, zeR.

(D) The functions of (y, s, z)/0y; (iel,), of (v, s, 2)/0z are continuous for
(v, s)eD, zeR.

(E) The function f satisfies the Lipschitz condition

lf(v, s, 2)=f(,s, 2| < Llz—2] for (y,s)eD, z,ZeR,
where

., “0<L<[K0(T)]'1 and

Ko(t):=——(—:—-— ‘.(t—s)'”"(1+(t—-s)“2)"ds for te[0, T].

(m=1)!
0

(5.2)

Then the function

(53 v(x,t) = limuv,(x,t) for (x,t)eD,

i—oo
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where

UO(x9 t)~j‘ f(ys S, vi(ya s))G"‘(x, Ly, S)dde
o

Dy _
for (x, tyeDqy x(0, T], i €Ny,
0 for (x, t) €Sy, i €Ny,

54 viilx,0)=

and v, is the (m)-regular solution in D of the (C™) linear problem from [9], is
the quasi<(m)-regular solution in D of the (C7) quasi-linear problem.

Proof. First, we shall prove that the function v given by formulae (5.3)
and (54) is quasi<(m)-regular in D. Since, by Theorem 7.1 from [9], the
function v, is (m)-regular in D, and since, by assertion (A) of Theorem 4.1, the
functions v; (i € N) are (m)-regular in D, so to prove that the function v is
quasi-(m)-regular in D it is sufficient to show that

(5.5) v; (x, n 3 v(x,1) for (x,1t)eD
and
(5.6 D3, vi(x, 1) = Di,v(x,1) for (x,1)eD,

where o = (&, a,), &€ Ny, a*eNo,. 0 <&+ 20, <2m—1.
Observe now that for an arbitraty fixed natural number k
k—1
vk(x7 t) = Z (Ui+1 (x’ t)_vi(x’ t)) for (x> t)GD
i=0
and

k-1
D o(x, t) = Z (Di,: Vi+1(x, D=D%, v (x, t)) for (x, t)e D,

i=0

where o = (&, a,), ¥e Ng, a, €Ny, 0 <|a]+2a, < 2m—1.
Consequently, to prove conditions (5.5) and (5.6) it is sufficient to show
that the series

(5.7 Z (vi+1(X, t)—v;(x, t))
i=0
and
(58) 3 (D% via s (x, )= D%, vy, 1),
i=0

a = (&, o), e Ny, a, €Ny, 0 <|a]+2a, <2m—1,
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are absolutely and uniformly convergent in the domains D and D, respect-
ively.

First, we shall show this assertion for series (5.7). To this purpose we
shall prove that

(5.9) [vi+1(x, D—0v;(x, )} € MKy (T)(LKo(T)f for (x, )eD, ie Ny,
where M = sup |f(x, t, vo(x, 1)) ().
(x,)eD

If (x,)eDg x |0}, then formulae (5.9) are a consequence of formulae
(5.4). Therefore, it is sufficient to prove that

(5.10)  |t;44 (x, )—0;(x, )] < MKo(T)(LKo(T)Y
for (x, tyeDy x(0, T], i €N,.

For i = 0 the above inequalities are a consequence of formulae (5.4),
(2.2)2.4) and of inequalities (b) and (d) from Lemma 2.1. Indeed,

oy (x, )=vo (X, ) = | [ f( 5, 00y, $)G™(x, t, y, s)dyds| < MKo(T)

0 Do

for (x, t)e Dy x(0, T].

Assume now that for an arbitrary fixed natural number i

lv; (x, ©) —vi—{ (x, )] < MKy (T)(LKo(T)f ™' for (x, )eDy x(0, T].

Then formulae (5.4), the Lipschitz condition from assumption (E), the above
inequality, formulae (2.2){2.4) and inequalities (b) and (d) from Lemma 2.1
imply that

t
|vi+1(x7 t)_vi(xa t)l < Lj |vi(y’ S)_Ui—l(ys S)‘ |Gm(x9 L, ) S)' dde
0

Do

< LMKo(T(LKo(T) ™| [IG™(x, ¢, y, s)ldyds
0 Dy

< MKo(T)(LKo(T))  for (x, t)e Dy x(0, T].

Therefore, by the mathematical induction principle, estimations (5.10)
are true. This completes the proof of estimations (5.9).

Estimations (5.9) and formula (5.2) imply that the series (5.7) is absolute-
ly and uniformly convergent in the domain D to the function v(x, t) and so
the sequence {v;(x, t)};ov, is uniformly convergent in D to this function,
which is consequently continuous in D.

Now we shall prove that the series (5.8) are absolutely and uniformly

() M < o since, by assertion (C) of Theorem 5.1 and by Theorem 7.1 from [9], the
function f(x, ¢, ve(x, 1)) is continuous in D.
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convergent in the domain D. To this purpose, observe that by formulae (5.4),
by the Lipschitz condition from assumption (E), by inequalities (5.9), by
assertion (c) of Lemma 2.2 and by inequalities (b) and (d) from Lemma 2.1,
we have

(511) ‘D:,t vi+1(x’ t)—m,t U,-(x, t),

t
L{ oy, 9=vi-1(y, 9| IDL, G™(x, t, y, 5)|dyds

0 Do

< LMKo(T)(LKo(T) 1 | | D%, G™(x, 1, y, s)|dyds
0 Dy ’
aﬁj
M(LKo (T 5 L o

j=0 ]'(m J DY pn S,

:
x ‘[(t—s)’"‘j_l ||D§+2ﬂfc(x, t,y, s)dy |ds
J D‘z) _
< M(LKo (T K, 0),
where
K. (1)

& o, !

=CY

—(ap+ 2802 4
il —7—=1)1 -”
Jj= 0] (m .l l) ijl a _Iﬂ

i(t =9 ] s
0
+(t—s)2]ds,
(x, t) ED, iENo, o = (&" a*), &’EN’(;, Oy eNo, 0< '&]+2a* < 2m—1,
ﬂj = (ﬁ"i’ tey
Since m—j—1-% 3 (,+2p) > m—j—1-32m—1—j) = =}, we have

r=1
K,(t) <K ,(T) for te(0, T], a=(, a,), TN, a,€N,, 0<|d]+2,
< 2m—1. Therefore, by inequalities (5.11), we obtain

(5.12) ID%cvie 1 (%, )= DY vi(x, O] < MK, (T)(LK,o(T)Y

for (x,t)eD, ieNy, a = (d, a,), XENG, o, €Ng, 0 <]+ 20, <2m—1.

Inequalities (5.12) and formula (5.2) imply that the series (5.8) are
absolutely and uniformly convergent in the domain D to the functions
D%, v(x,t) (@ =(&, o), XeNG, a, €Ng, 0 <l|a]+2a, < 2m—1), respectively,
and therefore the sequences D5, v;(x, f)};cn, are uniformly convergent in D to
these functions, respectively, which are consequently.continuous in D. This
completes the proof of assertion that the function v given by formulae (5.3)
and (5.4) is quasi-(m)-regular in D.
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Observe now that formula (5.5) and assumption (C) imply that the
function v satisfies the equation

UO(X9 t)_ ‘ ‘ f(y9 S, U(y’ S))Gm(x9 t, Y, s)dyds

_ 0 Do
U(x, t) - for (x, t) eD—O X(O’ T]’

0 for (x, t)eS,.
Hence, by Theorem 7.1 from [9] and by Theorem 4.1, the function v
satisfies the (CT) quasi-linear problem.

Consequently, the function v given by formulae (5.3) and (5.4) is the
quasi{(m)-regular solution in D of the (C}) quasi-linear problem.

6. Theorem on the existence of the quasi-(m)-regular solution of the (C7)
quasi-linear problem. In this section we shall prove the theorem on the
existence of the quasi-(m)-regular solution of the (CF) quasi-linear problem.
For this purpose we shall use Theorem 5.1 and Lemma 2.3.

THEOREM 6.1. Assume that:

(AYAE) The functions F; (ieI,_,), F i, el jel,, gel,_ 1) and F satisfy
assumptions (A}{E) of Theorem 5.1 mstead of functions f; (iel,_,), f (iel,,
jely, gel,_)) and f, respectively.

Suppose, moreover, that:

(F) ¢ is a continuous function on the interval [0, T] such that the
derivatives ¢?(0) =0 (iel,_,, m>2).

Then the function

(6.1) u(x, ) =y(v(x, 1) for (x,t)eD,
where
(6.2) v(x, 1) = limv;(x,t) for (x,t)eD,

i~

(6.3)  vi+1(x, 1)

0= [ GO FO. 57600, 9)G™(x, £, y, 9 dyds
0

Do

- for (x, t)eDy x(0, T], i €Ny,
0 for (x,t)€S,, i €Ny,

(6.4) vo(x, 1) = v (x, )+v2(x, t) for (x,t)eD,

65 o'(x, t)

b ’()'A’F. ;WG x, 1y, O)dy
- i=0 j=0 Dg for (x t)EDO X(O T]
Fo(x) Jor (x, 1) €S,
-0 for (x, t)€dDy x |0},
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n m—1
(6.6) vix, )= Y ¥ (vh(x, )+vi(x,1) for (x,1)eD,
i=1 k=0
(67)  vik(x, 1)
e EE g.())(s))_l Fl 9 b, Gl (x, 8, y, S)lyi=(— 1e; dy ds |
.y Jor (x, ) (D x(0, T\,
G{,k (xia t) for (x’ t) ES~{9
L 0 for (x, t) €S,

for iel,, jel,, keim_l,
(68) Gli(x, 1)

_ (’})(t))*l th,O(xia t) fOr (xia t) 651' X(Oa Tja ie'm jEIZ, k = 0,
o for (X, t)eD; x(0, T], iel,, jel,, kel,_,,

and y is the function defined by formula (2.5), is the quasi<m)-regular solution
in D of the (C¥) quasi-linear problem. ,

Proof. We shall seek the quasi-(m)-regular solution in D of the (Cr
quasi-linear problem in the form

(6.9) u(x, ) =y@)v(x,t) for (x,t)eD,

where y is the function given by formula (2.5) and v is a quasi{(m)-regular
function in D. By Lemma 2.3 and assumption (F), we obtain that if the
function v is the quasi{m)-regular solution in D of the (C7) quasi-linear
problem, where:

Fo(x) for xeDy, i =0,

F;(x) for xeD,, iel,_,,

(6.10) filx) = {

(611)  fI, (<0
(y@©) ' Fio(x', ) for (¥, 1)eD; x[0, T], i€l,, jel,, g =0,
- { (y@) 'Fi,(x, 1) for (x¥',t)eD; x(0, T, i€l,, jel,, qel,_,
and
(6.12) fx, t,2)=(y(®) ' F(x, t,y(t)z) for (x,)eD, zeR,

then the function u, given by formula (6.9), is the quasi<(m)-regular solution in
D of the (Cp) quasi-linear problem and vice versa.

To find the form of the function v we may apply Theorem 5.1 since
functions (6.10)H6.12) satisfy all the assumptions of Theorem 5.1. Indeed,
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formulae (6.10)6.12) and assumptions (A}E) of Theorem 6.1 imply assump-
tions (A}{E) of Theorem 5.1, respectively. Particularly, by the following
conditions:

T
Sup If;{kl S exp(fc(s) dS) Sup IF{,kl (ielm j€’2’ k elm—l)a
D; x(0,T) 0 D; x(0,T]

flo(x, )= (@) ' Flo(x,1)=0 for (x',)€Z; u(D; x10)) (i€l,, jely),

90,52 =("/(t))"‘—-——~——6F(y’ $702) g (v, s)eD, zeR (iel,),
0y; 0y;
Ay, s,2) _10F(y, s, 7(0z) _OF(y, s, y(1)2)
% (y®) e = o0w2) for (y, s)eD, zeR

and

lf(y9 s, Z)—f(y, S, E)' = ('}’(t))_l ,F(y> S, y(t)z)—F(ys S, y(t)s),
< L|z—-2 for (y,s)eD, z,ZeR,

we obtain that the functions fJ (i€l,, jel,, kel,_,) are bounded in

D; x(0, T], respectively, and satisfy equations (5.1), the function f satisfy

the Lipschitz condition together with the constant L from (5.2) and the func-

tions &f (y, s, 2)/¢y; (i€l,), & (y, s, z)/0z are continuous for (y, s)eD, z€R.
Then, by Theorem 5.1, we obtain that the function

(6.13) v(x, t) = limv;(x, 1)  for (x, t)e D,

where

t

UO(xa t)_ ‘. f f(y’ s, vi(ya s))Gm(x9 Ly, S)dde
0 Dy

©14) vy lx, 0 = for (x, t)eDy x(0, T], i €Ny,

0 for (x, t) €Sy, i €Ny,

(6.15) vo(x, 1) = v' (x, ) +v3(x, 1) for (x, t)eD,

m—1 i i . ) .
Y X 0(0) [ 406 0kt 00dy

i=0 j=0 ']/ by B
(6.16) v'(x,1) = ! for (x, t)eDy x(0, T],
fo(x) for (x, t) €Sy,

LO for (x, t)edDy x {0},
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n m—1

(6.17) vix, ) =Y Y (vh(x, 0+vi(x, 1) for (x, 1) €D,

i=1 k=0

t
_2ai ‘ [ fl:{k(yla S)Dyi Gk+1(x, t’ ya s)'y,=(_ l)jc.dyi dS
0 D; i i

for (x, 1) (Do x(0, T\,
gl (x, 1) for (x, 1)eS],
0 for (x, t) €S,

(6.18)  vly(x, 1) =

for iel, jel,, kel,_, and

(6.19)  gli(x', 1)

_%f{o(x", 1) for (X, 1)eD, x(0, T, iel,, jel,, k=0,
o for (¥, 1)eD, x(0, T1, iel,, jel,, kel,_,,

is the quasi<(m)-regular solution in D of the (C¥) quasi-linear problem, where
the functions f, fi, f, (iel,, jel,, ke I,_,) are given by formulae (6.10)«6.12).

Consequently, by formulae (6.9), (6.13)6.19) and (6.10)(6.12), we get
that the function u given by formulae (6.1)(6.8) is the quasi«{m)-regular
solution in D of the (C}) quasi-linear problem.

7. Theorems on the existence of solutions of Fourier’s linear iterated
problems.

7.1. Theorem on the existence of the (m)-regular solution of the Fourier’s
first linear iterated problem of type (C7). As a consequence of Theorem 4.1
from this paper, Theorem 7.1 from [9] and an analogous argument as in the
proof of Theorem 6.1 from this paper, we obtain the following:

THeorReM 7.1. Assume that asumptions (A), (B) and (F) of Theorem 6.1 are
satisfied. .Suppose additionally that the function F(y, s) is continuous for
(v, s)eD and the functions OF (y, s)/0y; (iel,)) are continuous for (y, s)eD.
Then the function

(7.1 u(x,t) =y(t)v(x,t) for (x,t)eD,
where

3 A
7.2 v(x, )= v(x,1) for (x,1)eD,

i=1

the functions v' and v* are defined by formulae (6.5)6.8) and
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v3(x, 1)

) =T fGE) F, )G (x, t, y, s)dyds  for (x,1)€Do x(0, T],
0D
0 ° for (x’ t) €§0,

is the (m)-regular solution in D of the (C?) linear problem.

Remark 7.1. If ail the assumptions of Theorem 7.1 are satisfied for m
= 1, then Section 22.7 from [10] or Theorem 2.1 from [3] imply that the
function u given by formulae (7.1) and (7.2) is the only one (l)-regular
solution in D of the (C}) linear problem.

Remark 7.2. If ¢(¢) = O for t €[0, T, then Theorem 7.1 and Remark 7.1
refer to the Fourier’s first linear iterated problem of type (C7}).

7.2. Theorem on the existence of a solution of Fourier's second linear
iterated problem of type (Cp). For all xeR", yeR", 0<s <t < T and for
every fixed natural number q we define the function G? by formulae (2.2),
(2.3) and

(73) Gi(xia t, Yi» S)

= Ui (xia ta yia S)+ Z (Ui‘,lk)(xi’ t’ yi’ S)+ U}f,"(xi, t, Yi» S))’

k=1
where the functions U;, UY) (iel,, jel,, ke N) are given by formulae (2.1).
Applying similar arguments as in papers [4], [6]-[9] and in this paper,
and using results from [5], we obtain the following theorems:

THEOREM 7.2. Let q be an arbitrary fixed natural number, and let G% be
the function defined by formulae (2.2), (2.3) and (7.3). Then:

(A) The function G%(x,t,y,s) and the derivatives D%, G%(x,1, Y, s),
Dj G(x,t, y,s) (xeNB* 1, |a| % 0) are continuous for all (x,t)eDgy x(0, T],
(v, s)eD, s <1t.

(B) Py, GUx,t,y,s) = P, Gi(x, t, ¥,
B {G“_"(x, t,y,s) for k=0,1,...,q—1,
o for k=gq,q+1, ...,
where (x, tyeD, x(0, T], (y.s)eD, s <t.

© PL,D,,GUx,t,y,5) =0 for (x,1)e8] (iel,, jel,, keNy), (v, s) €D,
s <t,

(D) imD¥G(x, t,y,5) =0 for (x,t)eD, (y,s) eD, x#y, s<t
- st
(k el,_,).
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THEOREM 7.3. Assume that:

(A) c is a continuous function on the interval [0, T}, T < oo, such that the
derivatives ¢?(0) =0 (iel,_,, m>2), v is the function defined by formula
(2.5), and the functions G' (zel,,) are given by formulae (2.2), (2.3) and (7.3).

(B) The functions D* F; (¢ e N3, |o'| < 2m—2i—2, iel,_,) are continuous
and bounded in D,.

(C) The functions Fi, (iel,, jel,, gel,_,) are continuous and bounded
in the domains D; x(0, T], respectively.

(D) The function F(y,s) is continuous for (y, s)eD and the functions
OF(y, s)/0y; (iel,) are continuous for (y, s)eD.

Then the function u of the form

3

u(x, )= Y u(x,t) for (x,)eD,

i=1

where

i n=Y ¥ (=1 f()y(r) [ 4F ;)G (x, 1, y, 0)dy,
Do

i=0 j=0

n m-1

W, ) =Y Y (ul(x, )+ul(x, 1),

i=1 k=0

(7)) Fi (0, 9G (x, 1, y, S)l dy' ds,

t
ul(x, 1) = "241'7(’)&')' , (= g

|
D;
wx,) ==y [ () F(y,9)G"(x,t, y, s)dyds

0 Dy
is continuous together with the derivatives D%, u (a = (a, o), & ENg, o, €Ny,
0 < |} + 2o, < 2m) in the domain D and satzsfles the following Fourier’s second
linear iterated problem of type (CP):
P"u(x,t)=F(x, 1) for (x, )eD,
D:‘u(x’ t)=Fk(x) for (x I)ESO’ keim—ls
PD u(x, 1) =Fi (<, 1) for (x,0eS], iel,, jely, kel,;.
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