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On the Cauchy problem for a semilinear system
of parabolic equations in a Banach space

Abstract. We consider the Cauchy problem for a semilinear system of parabolic equations
(in the Pietrowski’s sense) in a Banach space. We prove two existence theorems for the above
problem.

1. Introduction. We consider the Cauchy problem
(11) (Lu)(x3 t) = Dtu(x’ t)_ Z ak(xa t)D‘;u(x9 t)

Ikl <2p
=F(x,t, [DXu(x, t)]), (x,0)eG =R"x(0, T],
(1.2) u(x,0)=g(x), xeR",

where T > 0 is a constant, p is a fixed positive integer, and L is a uniformly
parabolic operator in Pietrowski’s sense [1]. Here u, D,u and D:u are
column vectors with components u;, D,u; and D u; (i =1, ..., N), respective-
ly, N being a fixed positive integer and

. A
Di=—, Di=——-ro  |kl=k + ... +k,.

At T ek L : "
[D% u] is a column vector whose components are all the derivatives DX u

with |k'| < 2p—1. The coefficients
a(x, ) =[al(x, 0], k<2

are square matrices of order N with complex-valued elements. Finally, u, g
and the right-hand side of (1.1) take values in the product BY, where B is a
complex Banach space with a norm | -||g.

First we extend some properties of [1] to the functions

(1.3) fox, 0 =[ [ I'(x,t;¢ 1) f (& vdEdr,
0 .

Rn

(1.4) : g(x, )= [ I'(x,t;¢, 0)g()d¢,

R"



346 Henryk Ugowski

where I' = [I'"] is the fundamental matrix of the system Lv = 0 (see [1] or
[2]), g is the function appearing in (1.2), and f: G — B". Next we prove two
existence theorems for problem (1.1), (1.2). The first theorem is a direct
generalization of the appropriate theorem of [1] and is obtained with the aid
of the Banach fixed point theorem. The proof of the second theorem is based
on some Darbo type fixed point theorem using measures of noncompact-
ness.

The results of the present paper involve, particularly, the random case.
Namely, let (2, &, P) be a complete probability space. Then B may be the
complex Banach space of all complex random variables u with finite norm

lullg = [ [lu(@)" P(dw)]'”, re[l, o) being a constant
Q

or
llull = ess sup {Ju(w): ue).
2. Properties of functions (1.3), (1.4). We introduce the following assump-
tions.

(2I) The coefficients al’ (k| <2p, h,j = 1,..., N) are complex-valued
functions defined, continuous and bounded in G = R" x[0, T], and satisfy
the Holder condition

2.1) labi(x, )—ali(x', )) < Ny |x—x|*, x,x'eR", te[0, T},
where
Il =(X l*)"%,  yeR",
i=1
ae(0, 1) and N, > 0 being constants. Moreover, for |k|] = 2p the coefficients

a}/ are continuous in t, uniformly with respect to (x, t)eG.

(2H) The operator L is uniformly parabolic in Pietrowski’s sense

(see [1] or [2]).

Let us write

p=02p7"Y qg=2p2p-1)"", IWl=(X In)", yeR"
i=1

By Theorem 2.1 of [1] (p. 73) there exists a fundamental matrix I
= [I'™] of the system Lv =0 which satisfies the inequalities

(2.2) ]Dk[’hj(x t; &, 1) < Ny(t—1) pl("HkD'eXp[ (”x f”)]

(t—7)"

'k|<2p3 x,éERn, 0<T<t<’T,
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23) D TM(x, t; & 0] < Ny(t—1) 12 'expl["“ (”x_éu )]

t—o""

x,(eR", 0<t<t<T
and

(24) |DEIM(x,t; & 1)=DErM(x', t; &, 1)l < Ny|x=x*(t—1) +

+ {exp[—-c ((I‘:_—;)Cpll) } +expl:_ ¢ (?f_;)il)) ]},

k| <2p—1, & x, xeR", 0<1 <t < T, where N,, ¢ > 0 are some constants.
Now, replace assumption (2.I) by the following one.

= py(ntik| +a)

(2.I11) Assumption (2.I) with condition (2.1) replaced by
lai(x, —ali(x', O < Ny Ix=xP+le=r1""], (x, 0, (x', 1)eG..
Then from [1] (Property 8, p. 104) the estimate follows
(2.5) DL (x, t; ¢, ©y=DEIM(x, t';¢, 1)l

SN, (=" (=) " {(z-z)"’l‘"*"‘“exp[_c ( llx— &l >]+

-
(' —=1)" py(n+ i) exp [_ c ((Itl’X_—rfyl )ﬂ‘,}

k| < 2p—1, x,¢eR", 0t <t<t'< T

In the present paper, B is a complex Banach space with a norm || -|i;.
We also use the product B™ (m being a positive integer) consisting of all
column vectors with m components belonging to B. It is clear that B™ with
norm defined by

615 = 3 bl beB”

is a complex Banach space too. For functions of real variables with values in
B (or in B™) the limit, continuity and partial derivatives are taken in the
strong sense, and integrals in the Bochner sense.

As in [1] (p. 42), we use the function

et, a, ) = ac(c?™ 1 —a? 1172 0L T,

where ae(0, cT''~2P) is a constant (¢ being the constant appearing in (2.2)-
(2.5)). Let €€(0, ¢) be a constant such that

(c—g) TV1=2P 5 g,

Then Lemma 6.1 of [1] (p. 41) implies the following one.
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LeMMA 2.1. There holds true the estimate

fenp e (oY anaie a2 < Nas ™ explote . =911
R" —

jor any xeR", te[0, T], N3 >0 being a constant.
Lemma 2.1 and the equality
o(t—1, ¢(z, a,¢), c)=0(t, a, ¢
imply the following lemma, immediately.

LemMMA 2.2. There holds true the estimate

J exp[-c(('tﬁ‘——fﬂ) ro(t a, c— e)lléll"]dé

R
< Nye "e—1)"explo(t, a, c—o)lx||1], xeR", 0<t<t<T
We introduce the following assumption.
(2IV) The function g: R"— B" is continuous and
llg IIE” < Nyexp(allxll), xeR",
where N, >0 is a constant.

Arguing as in [1] (Sec. 1, Chapter III) or [2], and using estimates (2.2)-
(2.5) and Lemma 2.1, one can obtain the following theorem.

THeOREM 2.1. Let assumptions (2.1), (2.1I) and (2.1V) be satisfied. Then the
function g defined by (1.3) has the following properties:
(a) All the derivatives D:g, |k| < 2p and D,§ are continuous in G.
Lg)(x, ) =0, (x,1)eCG
and

limg(x, 1) =g(x), xek’,

NO

where the convergence is uniform in every bounded domain of R".
(b) There hold the inequalities

ID%g(x, DlIg” NaNgt_pllk'exp[Q(t, a, c—e)||x||*], (x,eG, |kl <2p
and

—p(lk) +a)

ID5g(x, )= Dig(x', DIE” < Ny Nylx—x1"t exp[e(t, a, c—¢)Ix|]

for any x, x'eR", x|l <||x|l, O<t<T, |kl <2p—1, where N, >0 is a
constant.
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(¢) If assumption (2.1) is replaced by (2.III), then
ID5G(x, )= DEG(x, NI < No No(t' =0t "7 explo(r', a, c —)IxII7,
xeR", 0<t<t<T,Ikl<2p-1.
Now we need the following assumption.
(2.V) The function f: G — B" is continuous and satisfies the inequality
sup {1 (x, Dll5" exp[—e(t, a, c— &) Ix}|?]: (x, )e G} <o

and the generalized Holder condition [1] (p. 68) with respect to x in every
cylinder

(2.6) G,.=1{x0: Ix<r, te[r, T}}, r>0,7e(0, ],
Be(0, 1) being a constant.

Using estimates (2.2)42.5) and Lemma 2.2, and arguing like in [1] (p.
238), we get the following theorem.

THEOREM 2.2 Let assumptions (2.1), (2II) and (2.V) be satisfied. Then the
function f defined by (1.4) has the properties:
() All the derivatives D f, |k| < 2p and D, f are continuous in G,

LN, )= f(x, 0, (x,1)eG
and
limf(x,)=0, xeR",

N0

where the convergence is uniform in every bounded domain of R".
(i) For any y =1 write

N(y,f)= sup {!|If (x, )I§" exp[—yt—e(t, a, c—&)||xI|*]}.

(x,)e G

Then for any |k| < 2p—1 there hold the estimates
e”"|\D% £ (x, Dl5”
<SNsN (3, NPT My exp o, a, c—) NI, (x, )€
and '
e " |DL S (x, )=DL T (', D]l
SNsN@, f)y~ 14087 x—xtexp o (t, a, c—#) 119
Jor any x, x'eR", ||Ix|| < ||X'l, te[0, T], where
de(max {f, p;(2p—1+w)}, 1), Ns>0
are constants independent of y and N(y,f).
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(iii) If assumption (2.1) is replaced by (2.111), then for any |k| < 2p—1 there
holds the estimate

e~ |IDX f(x, )= DX F(x, )|I§"
- d—p—py(kl+a ,,, a ’
SN N(y, f)y 1 +o- P onv® 1% explo(t', a, c—e)[1xII%]
for any xeR", 0 <t <t'< T.

Note that the generalized Holder condition for f is used only in the
proof of the existence of the derivatives D% f, |k| = 2p, and D, f. Therefore
the condition above is superfluous in assertions (ii) and (iii).

3. The first existence theorem for problem (1.1), (1.2). In [1] (pp. 241-
250) there was considered the “scalar” problem (1.1), (1.2) with a generalized
condition (1.2). With the aid of the method of successive approximations
applied to an appropriate system of Volterra’s integral equations there was
proved the existence of solutions of the above problem in various classes of
functions. All those results can be extended to a Banach space case. In this
paper we restrict ourselves to proving the existence of classical solutions of
problem (1.1), (1.2) in a Banach space B (!). In the present section we obtain
an existence theorem for that problem with the aid of the Banach fixed point
theorem applied to the same system of integral equations as in [1].

First, retaining the notation of the previous sections, we introduce some
functional spaces needed in our further consideration. By Z(f), f[0, 1), we
denote the Banach space consisting of all continuous functions z: G — B
with finite norm

lzllg,p = sup HIt? z(x, t)yexp[—o(t, a, c—&) |ixl|llp: (x, ) €G}.
It will also be used the norm
llzllg,5,, = sup {ltf z(x, )exp[—yt —e(t, a, c—&)||x||]l|5: (x, t)e G}

(ye R being a constant) equivalent to the above norm. By Z (B, m) (m being a
positive integer) we denote the Banach space of all continuous functions
z: G — B™ with norm

m
||Z||§,'t',’; = Z l1zill,5-
i=1

We shall also use the norm

llzlI$%.y = ;1 llzills.p,»

(*) By the classical solution of problem (1.1), (1.2) we mean a continuous function u: G — B¥
possessing the derivatives D% u, |k| < 2p, D,u continuous in G and satisfying (1.1), (1.2) pointwise.
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equivalent to the above norm. Let us denote

B = (ﬂo, Bh trey B2p~1)9 ﬁi G[Os 1), m =(m09 my, ..., m2p—i)’

where my =N and m; N"! (i=1,...,2p—1) is the number of all multi-
indices k = (ky, ..., k,) such that |k| = i. By Z(B, m) we denote the product of
the spaces Z(f;, m) (i=0,1,...,2p—1) consisting of all column vectors
with components z;e€ Z (;, m;). The above product with the norm

P S

- .

”Z”B,E = Z ”Zi”B,;ii
i=0

is, of course, a Banach space. That norm is equivalent to the norm

2p—-1
(m)
l2llgh, = 3 Nzdlsg,-
i=0

We need the following assumption.
(3.D) The function F: G xB™ — B" is continuous and satisfies the Lip-
schitz condition
AIF(x, t,2)—F(x, t, )% < K llz—2§”, (x, H)eG, z,z’eB"
and the inequality
IF(x, t, Oll5” < Kot Pexp[—e(t, a, c~g)lIxll],  (x, )€,

where m =mo+m;+ ... +m,,_; and K,, K, >0, f€(0, 1) are some con-
stants. Moreover, F(x, t, z) satisfies the generalized Holder condition with
respect to x in every bounded domain

G,.xH cGxB™ (see (2.6)).

TueoreM 3.1. If assumptions (2.I), (2.11), (2.1V) and (3.1) are satisfied, then
there exists a solution of problem (1.1), (1.2).

Proof. As in [1] (p. 242), we consider the system of integral equations
written in the form
3.1) ov(x,0)
. .
= [T(x,t: & 0)g(&dl+ [de [ T(x,t;¢, D)F(, 1, 0, 1))d,
R" o R"

where I' = [DXTI] is the appropriate m x N matrix and v is a column vector
with m components. We write that system shortly in the operator form

(3.2) v = Ev.

With the aid of the Banach fixed point theorem. it will be proved the
existence of a unique solution of equation (3.2) in the space Z = Z (B, m) with
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()

Bi=pi (i=0,1,...,2p—1). In this space we shall use the norm |||l 3,
where the constant y > 1 will be specified later.
It follows from Theorem 2.1 that the function w, defined by the formula

(3.3) wi(x, )= [ T(x, ;¢ 0)g(§)d¢

nn
belongs to Z. By assumption (3.I), for any ve Z the function F(x, t, v(x, t)) is
continuous in G and satisfies the inequality

(4 F(x 1, o D) < Kot~ explo(t, a, c—e)[xl17]+K, llo(x, IS,

(x, )eG.

Setting 8o = max {B, B;,-} = max {8, 1—p,}, it follows from (3.4) that
£0||F (x, t, v(x, D) exp[ -yt —e(t, a, c—¢)[|xI|]

< K3 +Kqllollsgy  (x, ) €G,

where K, K, are positive constants independent of y > 1. Hence, by The-
orem 2.2, the function w, defined by the formula

t

(3.5 wy(x, 1) = [dt { T(x,t;¢&, ) F(&, 1, v(&, 1))dE

[ Rn
belongs to Z. Thus we have proved that E maps Z into itself.
Using assumption (3.I), we get
taollF(xa L U(X, t))_F(x:- L, U'(x, t))“gv)exp[_‘yt_g(t’ a, c—e)iIxH"]

< K5 ”U—U,”gt%,y: v, v EZs (X, t)eG,

K > 0 being a constant. Hence, taking into consideration Theorems 2.1 and
2.2 and relations (3.1), (3.2), we find that

(3.6) |Ev—Evly, < Koy Hlo—vll5g,, v, veZ,
where 6, (0, 1) and K4 > 0 are some constants independent of y > 1. Now
choose
y = max {1, (2K¢)""" 7?1,
Then it follows from (3.6) that
I|Ev— Ev'llgy,, < Mio—vll5g,, v, v'€Z.

Consequently, by the Banach fixed point theorem, there exists a unique
solution veZ of equation (3.2). Note that v is a column vector with
components v, |k] < 2p—1, where each component v, is a column vector
with N components. Let us introduce the function

_ v(O ..... 0)(xs t)9 (x, t)EG,
u(X, t)_{g(x)’ xERn, t =0.
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As in the scalar case, using assumptions (2.1V), (3.I) and Theorems 2.1 and
2.2, one can show that u is a solution of problem (1.1), (1.2). This completes
the proof.

4. The second existence theorem for problem (1.1), (1.2). We use the
notation of the previous sections. Moreover, we introduce further notation.
Let u be the Hausdorff measure of noncompactness in B (see, e.g. [3]). For
any bounded set V< B™ we define

Wy = Y (),
i=1

where
4.1) V; = {v;: v; is the ith component of some ve V}.
By Co(G, B) we denote the Banach space of all continuous and bounded
functions u: G — B with the norm
lulls,c = sup {lu(x, Dls: (x, t)eG}.

We shall also use the norm
lullg,G,, = sup {lle” " u(x, H}lls: (x, )e G}

(v R being a constant) equivalent to the above norm. By y,, (?) we denote
the Hausdorff measure of noncompactness in Cy(G, B) with respect to the
norm |i-|lgg,,. Mg,, B€[0, 1), denotes the Hausdorff measure of noncom-
pactness in Z(B) with respect to the norm |||l 4. Finally, for any bounded
set Vo Z(B, m) (resp. V< Z(f, m)) we define

m 2p—1
M(V) = Zl Mg, (V)  (tesp. MP (V)= Y My(H),
i= i=1

where V; is given by (4.1).
Now we state some lemmas needed in our consideration concerning
problem (1.1), (1.2).

LEmMA 4.1. The function M};'f'; satisfies assumption (4.1) of [4] (with B and
uy replaced by Z(B, i) and My, respectively).

The lemma follows easily from Lemma 2 of [3] and Lemma 4.5 of [4].

Lemma 4.2. If U is a bounded set of Co(G, B), then po,(U) = po(U,),
where

U, = {veCo(G, B): v(x,t)=e "u(x, t), ueU}.

(3 In the case y =0 we omit that subscript in all introduced symbols.
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LemMA 4.3. Let U be a bounded set of Z(f), fe[0, 1) and assume that
for any ue U we have
lle™u(x, s < Cy 1" "2explo(t, a, c—e) Xl (x, ) €G,

where yeR, C, >0, &,€(0, €) and ¢, > 0 are constants. Denote by V the set
of all functions

( t) _ tﬁu(x, t)exp[—Q(t, a, C—S)”an], (x’ f) GG,
P U=, xeRr, =0,

where ue U. Then we have M, ,(U) = po (V).
Lemmas 4.2 and 4.3 can be proved in the standard manner.

LemMMa 4.4. Let assumptions of Lemma 4.3 be satisfied and suppose that in
every cylinder G, (defined by (2.6)) all the functions of U are equicontinuous.
Then

M, (U) =sup { u(U(x, t))exp[ —ypt—o(t, a, c—&)|Ixl|?]: (x, )e G},
where U (x, t) = {u(x, t): ueU}.
Proof Let us consider the set W of all functions

( t)_ tﬂu(x, t)exP[_W—Q(t,a, C—-E)HXIlq], (xs t)EG’
YU, xeR =0,

where ue U. It follows from Lemmas 4.2 and 4.3 that
4.2 My, (U) = po,y (V) = po (W).
For any we W we have
IwCx, Olls < Cy 2 exp[—eslixlI],  (x, DeG,
where &3 > 0 is a constant vsuch that
—o(t,a,c—¢e)+olt,a,c—e) < —e3, te[0, T].

Moreover, all the functions of W are equicontinuous in every cylinder G, ,.
Therefore, arguing further like in the proof of Lemma 4.8 of [5], one can
show that

Ho (W) = sup {u(W(x, 1)): (x, NeG}.

Hence by (4.2), the assertion of Lemma 4.4 follows.
Now we introduce the following assumptions.

(4.1) Assumption (3.I) with the constant ¢ (appearing in the function g)
replaced by a constant ¢, €(0, &) and with the Lipschitz condition replaced by
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the condition
IF(x,t,2)—F(x, t, 2)§" < K, K(lz—ZlI§"), (x,1)eG, z,z'eB™,
where K; > 0 is a constant and

s, 0<s<1,
K (s) =
() {s, s>1,

ve(0, 1) being a constant. Moreover, for any bounded set G,, xH of G x B"
the function F(x, t, z) is continuous in te[z, T], uniformly with respect to
(x,2), |x| <r, zeH.

(4.I) There is a constant K > 0 such that for any bounded set V < B™
we have

UO(F(x, 1, V) < Ky ™ (V),  (x, DeG,
where F(x, t, V) = {F(x, t, v): veV}.

TueoreM 4.1. If assumptions (2.1), (2.11I), (21V), (4.1) and (4II) are
satisfied, then there exists a solution of problem (1.1), (1.2).

‘Proof. Like in the proof of Theorem 3.1 we consider equation (3.2) in

the Banach space Z = Z(f8, m), where m has the same meaning as in Section
3 and

E=(ﬁ0’ﬁl""’ﬂ2p—'l)’ ﬁi=pli+9’ i=09 la"', 2P—1,
0e(0, p, o) being a constant. Denote by K, = Ky(rg, 7), ro =1, y = 1 the set
of all functions veZ such that for i=0,1,...,2p—1 we have

e Ml (x, g <rot "Vexplo(t, a, c—&y)lIXlI9],  (x, DeG,
e |ln; (x, )—v, (¢, )5
Srot 1V Ix—x P+ [t— 11" exp[o(¢, a, c—ey)[|X]7]

for any (x,t), (¥, t)eG, ||x|]| <||x|l, t <t, where r, and y are constants
which will be specified later. Note that K, is a closed, convex and bounded
set of Z.

It follows from (4.I) that for any veZ the function F(x,t, v(x, ?)) is
continuous in G and there holds (3.4) with & replaced by ¢, and with K,
replaced by some other positive constant. Hence we have

@3)  O||F(x, t, v(x, )| exp[—yt—o(t, a, c—e;) IXI|14] < Cy 7o,
veK,, (x, )eG,

where 4, = max {f, 1—p,(1—a)} and C, >0 is a constant independent of y
and r,. Consequently, by Theorem 2.2, every function w, defined by (3.5) for
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any ve K, satisfies the inequalities

lwai (x, Dll5? exp[—yt—o(t, a, c—&) IX19] < C3roy~ 172t 7", (x, 1) €G,

(m;)

Iwzi (x, ) —wai (x', V)llp™ exp[—yt'—e(t', a, c—&,)||IX]}7]
< Caroy™ P20 M x— x| = 1))
for any (x, 1), (x,t)eG, ||x]| <|Ix||, t<t, where i=0,1,...,2p—1, &
=2"'(1+4,), and C; > 0 is a constant independent of y and r,. It follows
from Theorem 2.1 that the function w; defined by (3.3) satisfies the above
inequalities with C;3roy~ 1" replaced by some other constant C, > 0 inde-

pendent of y and r.
Now let us choose

(4.4 ro = max {1, 2C,},
4.5) ¥ = yo= max {1, (2C;3)"/®~ 1},

Then it follows from the above consideration that w = w, +w, = Eve K,, for
any ve K, i.e, E maps K, into itself. Using assumption (4.I) and Theorem
2.2 and arguing like in the proof of inequality (3.6), we get

111(mM) (M) ’
|Ev—Ev|l55, < Cs K(lv—vllgs,), v, v €Ky,

Cs > 0 being a constant. This proves the continuity of E in K,.
Now let us take any set V< K, and put
W, = {w, defined by (3.5): veV},
H,(x,t)=F(x,t,v(x, 1), veV, (x,1)eq,
Hy={H,: veV}, Hy(x,t)={H,(x,1): veV)}.

Let &' (d,, 6) be a constant. Inequality (4.3) implies that H, is a bounded set
of Z(6', N) and for any ve V we have

IH, (x, DlI§" < Cot *Cexp[—yt—el(t, a, c—&))|Ixl|], (x, DeG,

where Cq = C,ry. Recalling the definition of K, and assumption (4.I), it
follows that all the functions H,, v €V, are equicontinuous in every cylinder
G, . (defined by (2.6)). Therefore, using Lemma 4.4 and assumption (4.II), we
get

N
MSiI'\?y(HV) = Z Ma',y ((HV)i)

i=1
< C7 sup {té' ﬂ(M)(V(x9 t))exp[_yt_g(ta a, C—E)“X“q]}
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and
2p—-1
wm(V(x, 1) = Z 1™ (Vi (x, 1)
2p 1
< Y M (Wyexp D+t a, c—e)lIxllo],
i=0

C, >0 being a constant independent of y. Hence, in view of B; <d,,
i=0,1,...,2p—1, we have

(4.6) M, (Hy) < Cs My (V),
Cs > 0 being a constant independent of y.

Let us take any n > 0. Then there exist functions ¢,eZ(d’, N),
s=1, ..., Sq, such that for any veV we have

@7  H, =0, I8, < MY, (Hy)+n

for some s,e{l, ..., so} (depending on v). According to Theorem 2.2 the
functions

t

‘Dy(x, 1) = (dt ( [(x,t;& 00, 1)dE, (x,1)eG, s=1, ..., s,

0 Rn
(see (3.1)) belong to Z (B, m) and moreover, by (4.7) and (4.6), we have
Wz = @4, ll5g., < Coy™ '+ My (V) +Con,

where w, is defined by (3.5) and Cy > 0 is a constant independent of y. Thus
we have proved that

MY (Wy) < Coy™ o MY (V).

Hence, taking into account the equality M:,;"ﬁ;(iwl}) =0 (w; being defined by
(3.3)), it follows that

M (EV) = My (w1} + W) < Coy™ " 2 MG (V).
Consequently, choosing
y = max {yy, (2Cg)Y® "V}  (see (4.5))
we get
MG (EV) < IMi(V), Ve Ko = Kolro, 1),

where r, is defined by (4.4). Moreover, by the previous consideration, the
operator E maps Ky(ro, y) into itself and is continuous. Therefore, using
Lemma 4.1 and Lemma 4.2 of [4] (the Darbo type fixed point theorem), we
find that there exists a solution v of equation (3.2) in K,. The function v
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determines a solution u of problem (1.1), (1.2) in the same manner as in the
proof of Theorem 3.1. This completes the proof.

Remark. A simple example of a function F satisfying assumption (4.1I)
is the case F =F®4+F® where (roughly speaking) F is a Lipschitz
function with respect to the functional argument and F® is a completely
continuous function with respect to that argument.
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