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On the Cauchy problem for a semilinear system 
of parabolic equations in a Banach space

Abstract. We consider the Cauchy problem for a semilinear system of parabolic equations 
(in the Pietrowski’s sense) in a Banach space. We prove two existence theorems for the above 
problem.

1. Introduction. We consider the Cauchy problem

(1.1) (Lu){x, t) =  Dtu(x, t )— J] ak(x> t)Dkxu(x, t)
\k\^2P

= F(x,  t, [Z>*'u(x, 01), (*, t )eG =  Rn x(0, T ],

(1.2) u(x, 0 )  =  g(x), x g R” ,

where T  >  0 is a constant, p is a fixed positive integer, and L  is a uniformly 
parabolic operator in Pietrowski’s sense [1]. Here u, Dtu and Dku are 
column vectors with components u,, Dt щ and Dx щ (i — 1, ..., N), respective­
ly, N  being a fixed positive integer and

Di  =
№

dx d x *
1* 1 = * !  +

[D* « ]  is a column vector whose components are all the derivatives D^u 
with |*'| ^  2p— 1. The coefficients

ak(xt t) =  laÿ(xt t ) ] i |*| < 2p

are square matrices of order N  with complex-valued elements. Finally, u, g 
and the right-hand side of (1.1) take values in the product BN, where В is a 
complex Banach space with a norm ||-||B.

First we extend some properties of [ 1 ]  to the functions

(1.3) / ( x ,  t) =  f f Г(х, t; £, t) f (Ç ,  t) d£dx,
b Rn

g(x, t )=  f Г ( х ,  f ; 0)g(Ç)dÇ,
Rn

(1.4)
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where Г =  [Г ^ ] is the fundamental matrix of the system Lv =  0 (see [1 ] or 
[2]), g is the function appearing in (1.2), and / : G -* BN. Next we prove two 
existence theorems for problem (1.1), (1.2). The first theorem is a direct 
generalization of the appropriate theorem of [ 1 ]  and is obtained with the aid 
of the Banach fixed point theorem. The proof of the second theorem is based 
on some Darbo type fixed point theorem using measures of noncompact­
ness.

The results of the present paper involve, particularly, the random case. 
Namely, let (Q, P) be a complete probability space. Then В may be the
complex Banach space of all complex random variables и with finite norm

IMIb =  [||м(т)|rP(dw)Y/r, r e [ l ,  oo) being a constant
n

or

||м(|в =  ess sup J|m(co)|: ueQ).

2. Properties of functions (1.3), (1.4). We introduce the following assump­
tions.

(2.1) The coefficients akj (|fc| ^ 2  p, h, j  =  1, ..., N) are complex-valued 
functions defined, continuous and bounded in G =  /?"x[0, T ], and satisfy 
the Holder condition

(2.1) Iaij (x, t ) - a hkj (x', t)| ^  N x \x-x'\a, x, x 'eRn, te[_0, T ],

where

Ы = ( E  M 2)1'2, y e * ”,
«•= 1

a 6 (0, 1 ) and >  0 being constants. Moreover, for \k\ — 2p the coefficients 
akj are continuous in t, uniformly with respect to (x, t)eG .

(2.II) The operator L is uniformly parabolic in Pietrowski’s sense 
(see [ 1 ]  or [ 2]).

Let us write

P i = ( 2 P T 1, q — 2p(2p —1)_1, |Ы |= (Ё  |Л |«)1Й, yeR".
i= 1

By Theorem 2.1 of [1 ] (p. 73) there exists a fundamental matrix Г 
=  [ r hjJi o f the system Lv =  0 which satisfies the inequalities

(2.2) m r h>{x, t; ( ,  т)| «  Л?2( ( - т ) " Р1("+|‘ '’ -ехр

\k\ ^  2p, x, ÇelT, 0 ^  t <  t ^  T,

— c l lx-fl l
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(2.3) |D ,r«(x , t; î)| s: N 2 ( f - T ) _,’ l(”+2'” -exp — c Ix - f l l

. ( * - т Г

x ,£ e R n, 0 < i  < t ^ T
and

(2.4) IDlxr h‘ {x, /; { ,  z ) - D “, r h>(x\ r; x)| «  N 2 | jc -x1 *(f-t)
-  р1(и+ |fc| +a)

+

Г /||х-£|| V I
+  exp

L - 4 ( r - x r j J
+  <jexp

|fc| ^  2p— 1, x, x 'eRn, 0 ^  t < t  ^  T, where N 2, c >  0 are some constants. 
Now, replace assumption (2.1) by the following one.

(2.III) Assumption (2.1) with condition (2.1) replaced by

K J(x, г)-а ? (х\  t')\ s: N,  [| х -х Г  З ^ - г Г " ] ,  (x, t), (x\ t’)eG.

Then from [1 ] (Property 8, p. 104) the estimate follows

(2.5) |D */^(x, r; {, % )- Itxr hi(x, t'-,L t)I

P (r—T) ‘’ll”+I*l,exp — c
( t -  T)P1

+

+  ( r '-  T )-pi("+'fc|)eXp
I I* -£11 V

|/cK 2 p - 1, x, £ g K ”, 0 <  I <  t <  t' <  T.

In the present paper, В is a complex Banach space with a norm ||-||B. 
We also use the product Bm (m being a positive integer) consisting of all 
column vectors with m components belonging to B. It is clear that Bm with 
norm defined by

IIM li” ’ =  £  llb ilU , b e B m
i= 1

is a complex Banach space too. For functions of real variables with values in 
В (or in Bm) the limit, continuity and partial derivatives are taken in the 
strong sense, and integrals in the Bochner sense.

As in [1 ] (p. 42), we use the function

g(t , a, c) =  ac(c2p~1 — a2p~l t)1/(1-2p), 0 <  t ^  T,

where a e (0 , ст 1К1~2р)) is a constant (c being the constant appearing in (2.2)-
(2.5)). Let e g (0, c) be a constant such that

(с —в) T ll{1~2p) >  a.

Then Lemma 6.1 of [1 ] (p. 41) implies the following one.
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Lemma 2.1. There holds true the estimate

dÇ ^  N 3s Pl" tPinGxp[g{t, a, c —e)||x||e]exp - C l - v—  ) +а\Шч

for any x e R n, te[0,  T ], N 3 > 0  being a constant. 

Lemma 2.1 and the equality

ç ( t - x ,  q(t, a, c), c) =  ç{t, a, c) 

imply the following lemma, immediately.

Lemma 2.2. There holds true the estimate

VJ exp — c
( t - x f

W + q(x, a, c -e )| № dt

^  N 3e Pl"(t — T)Pinexp [g(f, a, c — e)||x||9],  x eR n, 0 ^  x < t <  T.

We introduce the following assumption.

(2.1 V) The function g : Rn -* BN is continuous and 

ll0 (x)llS?° <  N eexp(a||x||«), xeR ", 

where Ng >  0 is a constant.

Arguing as in [1 ] (Sec. 1, Chapter III) or [2], and using estimates (2.2)-
(2.5) and Lemma 2.1, one can obtain the following theorem.

Theorem 2.1. Let assumptions (2.1), (2.II) and (2.1 V) be satisfied. Then the 
function g defined by (1.3) has the following properties'.

(a) All the derivatives Dkxg, \k\ <  2p and Dtg are continuous in G.

and

{Lg){x, 0 =  0, (x, t )eG

lim g (x, t) =  g (x), x g Rn,
t \  о

where the convergence is uniform in every bounded domain of Rn.
(b) There hold the inequalities

OUÏ4 «  N 4 J V " " 1 111 exP [e (f, a, c.-e)||x||«], (x, t)eG , |fc| «  2p

and

\ Ш (х , i ) - 0*9(x\  OUÏ4 « ^ J V . I x - x r t ' ^ ^ ^ ’expCeft, a, с-е)\\х'\П

for any x, x 'eR n, ||x|| ^  ||x'||, 0 <  t <  T, \k\ ^  2p— 1, where iV4 >  0 is a 
constant.
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(c) I f  assumption (2.1) is replaced by (2.III), then 

\ Ш ( х ,  t ) - D kxg(x, t')|ir JV4 N t ((' — t)P1“ f " ,’1<|t| +“’ • exp [g ((', a, c -e )IW I*],

x eR n, 0 <  t ^  t' ^  T, \k\ ^  2p — 1. 

Now we need the following assumption.

(2.V) The function / : G -> BN is continuous and satisfies the inequality

sup {r* IIf ( x ,  OllS?°exp[-e(r, a, c-e)||x||«]: {x, t)eG ) <  oo

and the generalized Holder condition [1] (p. 68) with respect to x in every 
cylinder

(2.6) Gr>t =  {(x, t): |x| ^  r, t e [ r ,  T ] } ,  r >  0, те(0, T),

/?e(0 , 1 ) being a constant.

Using estimates (2.2H2.5) and Lemma 2.2, and arguing like in [1 ] (p. 
238), we get the following theorem.

T h e o r e m  2.2 Let assumptions (2.1), (2.II) and (2.V) be satisfied. Then the 
function f  defined by (1.4) has the properties:

(i) All the derivatives Dkxf  \k\ ^  2p and Dtf  are continuous in G,

(L f ) (x ,  t) =  f ( x ,  t), (x, t )eG

and

lim /  (x, t) =  0, xeR",
t \ 0

where the convergence is uniform in every bounded domain of R".
(ii) For any у ^  1 write

N (y,f )  =  sup {tfi\\f(x, f ) l lB °e x p [-y f-e (f ,  a, c-e)||x||«]}.
(x , t )eG

Then for any \k\ ^  2p— 1 there hold the estimates 

e-*\\D»f(x,t)\№

^  N SN  f  l’i |*l j|-> + * .ex p [e (t> а, с-е)||хЦ*], (x , t )e G

and

N s N ( y , f ) y - l + i -tâ~l‘ - n W + °,)\x-xrexi>le{t ,  a, c-e)||x||«] 

for any x, x'eR",  ||x|| ^  ||x'||, t e [ 0, T ], where

ôe(ma.x{fi, p1(2p—l+ot)}, 1), N s >  0 

are constants independent of y and N (y , f ) .
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(iii) I f  assumption (2.1) is replaced by (2.III), then for any \k\ ^  2p— 1 there 
holds the estimate

iV5 N (y , f )y ~ 1 + s-tS~ P ~ P1<|k| +a>(t' — t)Pl*exp [g{t\ a, c - £)|W|’ ] 

for any x e R n, 0 <  t ^  t' <  T.

Note that the generalized Holder condition for / is used only in the 
proof of the existence of the derivatives Dxf, \k\ =  2p, and Dtf  Therefore 
the condition above is superfluous in assertions (ii) and (iii).

3. The first existence theorem for problem (1.1), (1.2). In [1 ] (pp. 241- 
250) there was considered the “scalar” problem (1.1), (1.2) with a generalized 
condition (1.2). With the aid of the method of successive approximations 
applied to an appropriate system of Volt err a’s integral equations there was 
proved the existence of solutions of the above problem in various classes of 
functions. All those results can be extended to a Banach space case. In this 
paper we restrict ourselves to proving the existence of classical solutions of 
problem (1.1), (1.2) in a Banach space В (*). In the present section we obtain 
an existence theorem for that problem with the aid of the Banach fixed point 
theorem applied to the same system of integral equations as in [ 1 ].

First, retaining the notation of the previous sections, we introduce some 
functional spaces needed in our further consideration. By Z{ f ) ,  fie[0, 1), we 
denote the Banach space consisting of all continuous functions z: G -> В 
with finite norm

M b ,p =  sup \\\tfiz(x, 0 exp [ —e(r, a, c-£)||x||«]||B: (x, t)eG}.

It will also be used the norm

NIjM.y =  supjll^ztx, f )e x p [- y r -p (r ,  a, c-£)|MH||B: (x, t)sG}

(yeR being a constant) equivalent to the above norm. By Z(fi, m) (m being a 
positive integer) we denote the Banach space of all continuous functions 
z: G -> Bm with norm

m

i=  1

We shall also use the norm

m
llzl©,* =  £

i=  1

C1) By the classical solution o f problem (1.1), (1.2) we mean a continuous function и: G —> BN 
possessing the derivatives Dkxu, |/c| ^  2p, Dtu continuous in G and satisfying (1.1), (1.2) pointwise.
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equivalent to the above norm. Let us denote

P  =  ( P o ,  P i ,  P i E l 0, 1), w = (m 0, mb
where m0 — N  and (i =  1, . . 2p— 1) is the number of all multi­
indices к =  (&!, . . . ,kn) such that \k\ =  i. By Z(fi, fh) we denote the product of 
the spaces Z  (/?,-, m,) (i =  0, 1, ..., 2p— 1) consisting of all column vectors 
with components z ^ Z ^ , ,  mf). The above product with the norm

i=0

is, of course, a Banach space. That norm is equivalent to the norm

1 И 1 в ^ , у  =  X  H Z iH  B,pity
i=0

We need the following assumption.

(3.1) The function F : G xBm ~^BN is continuous and satisfies the Lip- 
schitz condition

• ||F(x, t, z) — F(x,  t, z W *  <  KtWz-z'W™, (x, t)eG, z, z 'eBm 

and the inequality

IIF(x,  t, 0 )C  <  K 2t~fie x p [ - g ( t ,  a, c-£)||x||«], (x, t )eG ,

where m =  т0 + т̂  +  ... + m 2p- i  and K 1, K 2 >  0, pe(  0,1) are some con­
stants. Moreover, F (x, t, z) satisfies the generalized Holder condition with 
respect to x in every bounded domain

Gr t xH  cz G xBm (see (2.6)).

T h e o r e m  3.1. I f  assumptions (2.1), (2.II), (2.IV) and (3.1) are satisfied, then 
there exists a solution of problem ( 1 .1 ), ( 1 .2).

P roo f. As in [1 ] (p. 242), we consider the system of integral equations 
written in the form

(3.1) u(x, t)

=  f f ( x ,  t: i ,  0) g ( ( ) d ( +  \th ( f ( x ,  t; t )F ( { ,  t , v( i,  х )Щ,
R n 0  R n

where Г =  [D *Г ] is the appropriate m x N  matrix and у is a column vector 
with m components. We write that system shortly in the operator form

(3.2) v =  Ev.

With the aid of the Banach fixed point theorem it will be proved the 
existence of a unique solution of equation (3.2) in the space Z  — Z{p, m) with
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A  =  Pi i (i =  0> I» ..., 2/7— 1 ). In this space we shall use the norm IHIbJ,?» 
where the constant y ^  1 will be specified later.

It follows from Theorem 2.1 that the function wk defined by the formula

(3.3) Wi (x, t) =  f r { x , t ;Ç ,0 )g (Q d t
Rn

belongs to Z. By assumption (3.1), for any vgZ  the function F (x , t, v(x,  t)) is 
continuous in G and satisfies the inequality

(3.4) ||F(x, t, v(x, t))|p ^  K 2t~fiexp[g(t, a, c - e )  ||x||«] + K X ||i;(x, Oils0,

(x, t)eG .

Setting ô0 =  max {/?, P2p- i }  =  max {P, 1— Pi}, it follows from (3.4) that 

(io ||F(x, t, v(x, г))!|в"'|ехр [ —y (— p(t, а, с —e )||л:||в]

^ К 3 +  К 4 |И|$,,. (x .O eG ,
where К ъ, K 4 are positive constants independent of у ^  1. Hence, by The­
orem 2.2, the function w2 defined by the formula

(3.5) w2 (x, t) =  fd i f Г (x, t; Ç, t)F (£ , т, v(£, т))d£
0 Rn

belongs to Z. Thus we have proved that E maps Z  into itself.
Using assumption (3.1), we get

tô°\\F(x, t, v(x, t ) ) - F ( x ,  t, v' (x, 0 )||в° exp [ - y t - g ( t ,  a, c-e)||x||«]

^  K 5\\v-v'\\{B},y, v, v’ eZ, (x, t )eG,

K 5 >  0 being a constant. Hence, taking into consideration Theorems 2.1 and 
2.2 and relations (3.1), (3.2), we find that

(3.6) v .v 'e z ,

where ^ e fO , 1) and K 6 >  0 are some constants independent of У >  1. Now 
choose

у =  max { 1 , (2K 6)1/(1 <5l)}.

Then it follows from (3.6) that

||£o-£o'||iri.r «  v, v 'eZ.

Consequently, by the Banach fixed point theorem, there exists a unique 
solution v e Z  of equation (3.2). Note that v is a column vector with 
components vk, \k\ ^  2p— 1 , where each component vk is a column vector 
with N  components. Let us introduce the function

»«>,...,o>(*» 0 , (x, t)eG,
g(x), x e R n, t — 0 .

u(x, t) =
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As in the scalar case, using assumptions (2.1 V), (3.1) and Theorems 2.1 and
2.2, one can show that и is a solution of problem (1.1), (1.2). This completes 
the proof.

4. The second existence theorem for problem (1.1), (1.2). We use the
notation of the previous sections. Moreover, we introduce further notation. 
Let p be the Hausdorff measure of noncompactness in В (see, e.g. [3]). For 
any bounded set К с Г  we define

m

л '" (Ю  =  £  МЮ,
i= 1

where

(4.1) Vt =  {vp v{ is the ith component of some veV}.

By C0 (G, B) we denote the Banach space of all continuous and bounded 
functions и: G -> В with the norm

M b,g =  sup{||w(x, r)||B: (x, t)eG}.

We shall also use the norm

IMIe.G.y = sup{||é?-y,n(x, t)}\\B: (.x, t)eG}

(yeR being a constant) equivalent to the above norm. By p0ty (2) we denote 
the Hausdorff measure of noncompactness in C0(G, В) with respect to the 
norm || *IIb,g,7• /?е[0, 1), denotes the Hausdorff measure of noncom­
pactness in Z ( f )  with respect to the norm |Н1в,/?,г  Finally, for any bounded 
set F c  Z (/?, m) (resp. F c= Z (Д, m)) we define

m 2 p -  1

M£l(V )  =  I  М , „ т  (resp. M < g (K )=  X  М ^ (Ю ),
i = 1 i = 1

where Ц is given by (4.1).
Now we state some lemmas needed in our consideration concerning 

problem ( 1 .1 ), ( 1 .2).

L e m m a  4.1. The function satisfies assumption (4.1) of [4 ] (with В and 
Pi replaced by Z ( f ,  m) and M ^ ,  respectively).

The lemma follows easily from Lemma 2 of [3 ] and Lemma 4.5 of [4].

L e m m a  4.2. I f  U is a bounded set of C0 (G, B), then p0>y(U) =  p0(Uy), 
where

Cauchy problem for a semilinear system

Uy =  {i;eC 0 (G, B): y(x, t) =  e ytu(x, t), ueU}.

(2) In the case у =  0 we omit that subscript in all introduced symbols.
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Lemma 4.3. Let U be a bounded set of Z(/?), /?е[0, 1) and assume that 
for any ueU  we have

IIe~ytu(x, Oils ^  Cx t~p+E2Qxp\_g(t, a, c - e x ) ||x||«], (x, t)eG,

where yeR, Cx > 0 , £ ^ (0 , e) and e2 >  0 are constants. Denote by V the set 
of all functions

\tpu{x, t )Qxp [ -g ( t ,  a, c-£)||x||9], (x , t )eG,

’ (X' f ) “ io . X 6 J P . I - 0 .

where ueU. Then we have M fiy(U) =  p0y(V).

Lemmas 4.2 and 4.3 can be proved in the standard manner.

Lemma 4.4. Let assumptions of Lemma 4.3 be satisfied and suppose that in 
every cylinder Grx (defined by (2.6)) all the functions of U are equicontinuous. 
Then

=  sup t ) ) e x p [ - y t - g ( t ,  a, c-e)||x||*]: {x, t)eG},

where U (x, t) =  {u(x, t): ne U}.

Proo f. Let us consider the set W of all functions

tpu(x, t)exp[  — yt — g(t, a, c — £)||x||9], (x, t)eG,
0, x e R n, t — 0,

where ueU.  It follows from Lemmas 4.2 and 4.3 that 

(4.2) M Pty(U) =  p0ty(V) =  p0(W).

For any we IF we have

||w(x, t)\\B <  Cx t£2exp [ —£3 ||x||9],  (x, t)eG,

where £3 >  0 is a constant such that

- g ( t ,  a, c - e )  +  g(t, a, c - e x )  ^  - £ 3, t e [ 0 , Т ].

Moreover, all the functions of W are equicontinuous in every cylinder Grx. 
Therefore, arguing further like in the proof of Lemma 4.8 of [5], one can 
show that

p0{W) =  sup {p (W (x, 0): (x, t)eG}.

Hence by (4.2), the assertion of Lemma 4.4 follows.
Now we introduce the following assumptions.

(4.1) Assumption (3.1) with the constant £ (appearing in the function g) 
replaced by a constant £i e(0, e) and with the Lipschitz condition replaced by
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the condition

IIF(x,  t, z) — F(x, (x, t )eG, z, z 'eBm,

where >  0 is a constant and

K(s) =
s,

0 ^  s <  1 ,

S >  1,

ve(0, 1) being a constant. Moreover, for any bounded set Gr r xH  of G xBm 
the function F(x,  t, z) is continuous in £е[т, T] ,  uniformly with respect to 
(x, z), |x| ^  r, zeH.

(4.II) There is a constant K \ > 0  such that for any bounded set V <= Bm 
we have

Hw (F{x, t, V)) <  K\ (x, £)eG,

where F(x,  t, V) =  {F(x, t, v): ve V}.

T h e o r e m  4.1. I f  assumptions (2.1), (2.III), (2.1 V), (4.1) and (4.II) are 
satisfied, then there exists a solution of problem ( 1 .1 ), ( 1 .2).

P roo f. Like in the proof of Theorem 3.1 we consider equation (3.2) in 
the Banach space Z  =  Z(fi,  m), where m has the same meaning as in Section 
3 and

0 =  (Po, Pu P2p- i ) ,  A  =  pi i-h0, i =  0 , 1 , ..., 2p - l ,

6e(0, Pi a) being a constant. Denote by K 0 — K 0(r0, y), r0 ^  1, у ^  1 the set 
of all functions v e Z  such that for i =  0, 1 , ..., 2p— 1 we have

e~yt\\Vi{x, t)\\{Bi} <  r0t P1 'exp[^(£, a, c-fiJ Ilx ll9],  (x, t)eG, 

e~yt’\\Vi{x, t)~Vi(x', t y f f0

<  r0£"Pl(i+a)• [|x- x f  + 1£ - £'|Pia]e x p Iq(£', a, c - £l)||x|H

for any (x, £), (x', £')g G, ||x|| ^  ||x'||, £ <  £', where r0 and у are constants 
which will be specified later. Note that K 0 is a closed, convex and bounded 
set of Z.

It follows from (4.1) that for any v e Z  the function F(x,  t, i?(x, £)) is 
continuous in G and there holds (3.4) with £ replaced by £l and with K 2 
replaced by some other positive constant. Hence we have

(4.3) £̂ 0||Ĵ (x, £, t?(x, £))||^ехр[-у£-р(£, а, с-г^ЦхН9]  <  C2r0,

v e K 0, (x, £)g G,

where <50 =  max{/l, 1 —p j ( l  —a)} and C2 >  0 is a constant independent of у 
and r0. Consequently, by Theorem 2.2, every function w2 defined by (3.5) for
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any v e K 0 satisfies the inequalities

l|w2/(x, OllBm,)e x p [ - y f - ^ ( f ,  a, c - e 1)||x||e]  ^  C3r0y~1 + Ôt P1‘ , (x, t )eG,

||w2l (x, t ) - w 2i(x', t')\\{B0exp [ -y t ' -Q { t ' ,  а, с - г 1 )||х'||‘г|

^ C 3r0y - 1+ôt~Pl(i+a)l \x-  x'|“ + 11 -  t f 1*]

for any (x, t), {x’, t ' )eG, ||x|| ^  ||x'||, t ^  t', where i =  0, 1, . . 2p— 1, Ô 
=  2“ 1 (1+  c>0), and C3 >  0 is a constant independent of у and r0. It follows 
from Theorem 2.1 that the function defined by (3.3) satisfies the above 
inequalities with C3r0y~1 + Ô replaced by some other constant C4 >  0 inde­
pendent of y and r0.

Now let us choose

(4.4) r0 =  max { 1 , 2C4|,

(4.5) y ^  y0=  max ( 1 , (2C3)

Then it follows from the above consideration that w =  Wj + w 2 =  E veK 0 for 
any v e K 0, i.e., E maps K 0 into itself. Using assumption (4.1) and Theorem 
2.2 and arguing like in the proof of inequality (3.6), we get

\\Ev-Ev'\\%iy S  С5 К(||»-1>'||$,,), v, V'SK0,

C5 >  0 being a constant. This proves the continuity of E in K 0.
Now let us take any set V с. К 0 and put

W2 =  (w2 defined by (3.5): veV ] ,

Hv(x, t )— F(x,  t, v(x, t)), veV, (x, t )eG,

Hv =  {Hv: ve V }, Hv (x, t) =  {Hv(x, t): ve V}.

Let <5'e(<50, <0 be a constant. Inequality (4.3) implies that Hv is a bounded set 
of Z (ô ' , N) and for any u e F w e  have

\\Hv(x, 0 Г  <  C6t~ô° e x p [ -y t - Q ( t ,  a, c —ej)||x||«], (x, t)eG,

where C6 =  C2r0. Recalling the definition of K 0 and assumption (4.1), it 
follows that all the functions Hv, veV, are equicontinuous in every cylinder 
Gr>t (defined by (2.6)). Therefore, using Lemma 4.4 and assumption (4.II), we 
get

=  I  ,)
i= 1

^  C7 sup \t0' fiim)(V(x, t ) )Qxp [ -y t -Q ( t ,  a, c-e)||x||e] }
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and

o) =  2'x  f>)
1=0

<  Z  г ^ М ?,у(Ю ехР [ ^  +  е (^  c-e)||x||«],
«=о

C7 >  0 being a constant independent of y. Hence, in view of <  <50, 
i — 0, 1, ..., 2p — 1, we have

(4.6) C8

C8 >  0 being a constant independent of y.
Let us take any rj >  0. Then there exist functions (pse Z {d ',N ), 

s =  1, s0, such that for any ueK  we have

(4.7) \\H.-vt l\tg)rr < M V !v{Hv) +  T,

for some Sje (1, . . . ,s 0) (depending on v). According to Theorem 2.2 the 
functions

t
•ф5(х, t) =  fûfi f F (x , t ; £, t)<ps(£, T)d£, (x, 0 g G ,  s =  1 ,  s0

b Rn

(see (3.1)) belong to Z  (Д, m) and moreover, by (4.7) and (4.6), we have

Ци-2 -  <  c 9 y- 1 +й л С (Ю +  c 9 n,

where w2 is defined by (3.5) and C9 >  0 is a constant independent of y. Thus 
we have proved that

м »> !К С ,г1+‘ аС(Ю.
Hence, taking into account the equality =  0 (w, being defined by
(3.3)), it follows that

M g (£ F )  =  Л С ( Ь }  + W,) «  C , y - 1 + i M f t (V ) .  '

Consequently, choosing

у =  max {y0, (2C9) 1/(<5_1)} (see (4.5))

we get

M ^ (£ F )  «  (M ^ (F ) ,  k c  K 0 =  K 0(r0, y),

where r0 is defined by (4.4). Moreover, by the previous consideration, the 
operator E maps K 0{r0, y) into itself and is continuous. Therefore, using 
Lemma 4.1 and Lemma 4.2 of [4 ] (the Darbo type fixed point theorem), we 
find that there exists a solution v of equation (3.2) in K 0. The function v
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determines a solution и of problem (1.1), (1.2) in the same manner as in the 
proof of Theorem 3.1. This completes the proof.

Rem ark. A simple example of a function F  satisfying assumption (4.II) 
is the case F — F(1) +  F{2), where (roughly speaking) F (1) is a Lipschitz 
function with respect to the functional argument and F{2) is a completely 
continuous function with respect to that argument.
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