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The Faedo-Galerkin method in thermal stresses theory

Abstract. Five boundary-initial value problems for thermal stresses equations of classical 
and generalized thermomechanics describing inhomogeneous, anisotropic medium occupied 
bounded domain G cz /Г (r — 1, 2, 3) have been formulated according to the classification of the 
V. D. Kupradze. The solvability and properties of the weak solutions of these boundary-initial 
value problems in the Sobolev spaces have been investigated using the Faedo-Galerkin method.

1. Introduction. The initial-boundary value problems in the thermal 
stresses theory have been investigated by V. D. Kupradze (cf. [24]), W. 
Nowacki (cf. [34], [35], [37], [38], [39]), J. C. Podstrigac (cf. [45])‘in the 
class of smooth functions using the method of integral transformation and 
the method of integral equations. The initial-boundary value problems in 
classical linear thermoelasticity have been studied by С. M. Dafermos (cf. 
[5]) using the method of Hilbert space and by G. Duvaut and J. L. Lions (cf. 
[9]) using the method of the variational inequalities.

• In this paper, using the Faedo-Galerkin method, the solvability and 
properties of the weak solutions of the five boundary-initial value problems 
for thermal stresses equations of classical and generalized linear 
thermomechanics have been investigated in anisotropic Sobolev spaces. 
These boundary-initial value problems have been formulated according to 
the classification of V. D. Kupradze (cf. [24]). We restrict our attention to 
classical and generalized linear thermal stresses equations for inhomogeneous 
anisotropic materials.

After an introductory section in which the initial-boundary value 
problems are formulated we proceed to investigate existence and uniqueness 
of weak solutions. We prove the existence and uniqueness theorems of the 
weak solutions and the continuous dependence of these solutions on given 
data for the five boundary-initial value problems for the thermal stresses 
equations of classical and generalized linear thermomechanics (Sections 4 and 
5), respectively.

In the final sections, we study the regularity of the weak solutions with 
respect to the space and time variables in the case of classical and 
generalized thermal stresses theory (Sections 6 and 7).

Basing on the proved theorems, we have obtained the sufficient
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conditions in order to make the weak solution of the first boundary-initial 
value problem in the case of isotropic and homogeneous medium the 
classical solution (Example 6.1 in Section 6).

The proofs of all existential theorems have been carried out using the 
Faedo-Galerkin method.

2. Sobolev spaces. By r we denote the dimension of the Euclidean space 
&  in which the configuration of the thermoelastic medium is embedded. The 
analysis will be carried out for general r though the model is physically 
meaningful only for r =  1, 2, 3. By x we denote the typical point of El and 
by x 1, . . . , x r the coordinates of x with respect to a fixed Cartesian 
coordinate system. By a = (al5 ... ,  ar) we denote multiindex and by |a| =  olx 
-h ... -h ar its length. We introduce the following notation for derivatives with 
respect to the space variables.

da =  d*1 ... d*r, where dj = ô/ôxj for j  = 1, ... ,  r.

Time derivatives are denoted by = f f /df ,  where s = 1, 2.
Let G be an open bounded set in Er (cf. [12], p. 13) with regular 

boundary ÔG.
Z?(G) is the space of (1) (equivalence classes of) measurable functions и 

such that (p being given with 1 ^  p ^  oo)

Taken with the norm (2.1) or (2.2), U(G) is a Banach space; if p = 2, 
L2(G) is a Hilbert space, where the scalar product corresponding to the norm
(2.1) (where p = 2) is given by

The Sobolev space W"(G)  (cf. [4], p. 29-38, [48], p. 53-64), 1 ^  p < oo, 
consists of functions и belonging to LP(G) with weak derivatives dau, |a| ^  m, 
belonging to B(G)

(2.1) IMILp(G) = (j\u(x)\pdx)1/p < 00, 1 < P < 00,
G

(2.2) IMILao(G) = ess sup|u(x)|, P =  00,

(2.3) (M, v)l2 = $u{x)v(x)dx.  
a

(2.4) W™{G) = {u: ueLp(G): d*ueLp(G); |a| ^  m},

With the norm

(2.5)

it is a Banach space.

f1) All functions considered here are real-valued.



Faedo-Galerkin method in thermal stresses theory 85

The case p — 2 is fundamental. To simplify the writing, we shall put

W?(G) =

with the scalar product

(2.6) ». («. »W , = E
|a|=Sm

it is a Hilbert space. The norm in this space is given by

(2-7) IN „ C)=( I  ll^ < 2(G))1'2-
|a | < m

Let C®(G) denote the space of infinitely differentiable real-valued 
functions defined on G consisting of those elements with compact support 
contained in G. By H™(G) we denote the Hilbert space obtained as the 
completion of Cq {G) by means of the norm IHIHm(G) given by (2.7). H%(G) is 
the subspace of the space Hm(G).

By L2(G) (Hm(G)) we denote the r-fold Cartesian product of L2(G) 
(Hm(G)), respectively. We denote the scalar product and norms in the spaces 
L2(G), Û(G) (H"(G), H” (G)) by (■, -)l2 , (•, \ 2 ((•, (•, •)*») and |H|i2> ||.||t2
(IMIh». respectively.

In this paper we shall investigate the solvability of evolution problems 
using the Faedo-Galerkin method in the space L2(/, X), where /  =  (0, S) c  R 
(0 < 5 < oo) is the time interval, X  the Banach space with its norm denoted 
by \\-\\x (Cf. [8]).

By H ( I , X )  we denote the space of (classes of) functions t - > f ( t ) 
from (0, 5) -* X  measurable for the measure dt such that

(2.8) N U ,„  = (JllwWlM1"’. 1 Sip <°0,
0

(2.9) N1 X) = ess sup ||u {t)\\x , p = со.
t eX

This is a Banach space.
. W£(I, X), k e l \ ,  denotes the space of the measurable functions u\ I -* X , 

with dnu/dtnel3{I, X) for 0 ^  n <  к (derivatives in the weak sense). The 
norm in Wj (/, X) is given by:

к d
(2.10) M lb .  =  I  \\\d*u(t)ldl"\\2x dt.

Z n =  0 0

The space W£(I, X) is the Hi(bert space (cf. [53], p. 168).
Let V and H be two Hilbert spaces over R with norms ||-||v, ||-||H,
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respectively, their scalar product in Я  being written (•, -)H; we assume that 
V c  Я, V dense in Я (2).

Identifying Я  with its dual (H — H *) (3), Я is then identified with a 
subspace of the dual V* of V, whence

(2.11) К с Я с к * .

The spaces V, H, V* which have property (2.11) form the Gelfand triples (cf. 
[8], [53]).

In this paper we shall use the following inequalities:
1. The Poincaré inequality (cf. [12], p. 14)

(2.12) £  j \ê°u\2dx, VueHZ(G),
|a | $  m G

where C = C(G, m).
2. The Korn’s second inequality (c f /[8], p. 110)

(2.13) §£ij(u)eij(u)dx+ ^и{и ^ х  ^  C ||m||^15 y u e H 1(G),
G G

where е0 (м) = j ( d j uf + d{ Uj) and C = C(G), C > 0.
3. Gronwalfs inequality (cf. [26], p. 298). Let g, q be functions with the 

properties g, £eC ([0 , 5]), g, q ^  0 and let g be a non-decreasing function. If 
g satisfies the inequality

t
(2.14) Q(t) ^  g(t) + C0 $e(a)do,  0 ^  t ^  S, C0 = const,

о
then there exists a constant C1 = C1 (C0, 5) such that

(2.15) ô(t) ^  Cigit),  V te [0 ,5 ] .

4. The G fading's inequality (cf. [33], p. 192). Let A be a strong elliptic 
operator of order 2m. Then there exist constant a0, A0 (a0 > 0, 20 > 0) such 
that

(2.16) ( —1ГКе(Лм, u)^<x0 \\u\\2Hm- X 0\\u\\2L2 for V u eC 0*(G).

R e m a r k  2.1. The spaces used in our consideration form the Gelfand 
triples, for example in the case (cf. Theorem 4.2) of the first boundary-initial 
value problem we use the spaces H q(G), L2(G), Я _1(С) which form the 
Gelfand triple.

3. Statment of the problems. In this introductory section we formulate

(2) Therefore, there exists a constant c such that IMIh <  c ||r||K, V r e K
(3) By V* we denote the dual space to the space V
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the initial-boundary value problems for the equations of thermal stresses of 
classical and generalized thermomechanics.

In the case of r-dimensional (r = 1, 2, 3) linear thermoelasticity theory, 
the equations of thermal stresses of classical thermomechanics for the 
inhomogeneous anisotropic medium4 covering bounded domain G c= Er 
(r = 1, 2, 3) (cf. [23], [34], [35], [49]) have the following form:

(3.1) dfu = A{x, ô)u + B + (x, d) T+F,

(3.2) dt T = a(x, d) T+q,

where и = (tq, ..., ur) is the displacement vector field of the medium, T  the 
temperature of the medium, F = {Fl , ..., Fr) the body force, q intensity of 
heat sources. We denote by A(x,  8) the matrix differential operator r x r  of 
the form (4)

(3.3) A(x,  8) =  (дла;Ш(*)

which is a strong elliptic, self-adjoint (formally) operator. Its coefficients are 
continuously differentiable in a bounded domain G with smooth boundary 
dG (cf. [1], p. 63) and satisfy the following (cf. [34], [49]) conditions:

(3.4) ü j h k l ( X ) =  a h j k l ( X ) =  a j h l k ( X ) ~  a k l j h ( x )> V x e G.

The scalar differential operator a(x, d) has the form

(3.5) a(x, d) =ôhalh(x)êl

and is strong elliptic (formally), self-adjoint. We denote by B + (x, d) the one- 
column matrix differential operator r x 1 of the form

(3.6) B + (x, (?) = ( - d ,M x ) ) fc= i,

The coefficients bih are bounded, continuously differentiable (cf. [49], p. 188) 
and satisfy the following conditions:

(3.7) blh(x) = bhl{x), VxeG.

For equations (3.1), (3.2) we formulate (cf. [24], p. 55, 56, 600; [34], p. 69, 
[5]) five boundary-initial value problems in which the boundary conditions 
have the following forms:

(I) u\I xdG~= U; t \ , , x  =  ©;

(II) S ' п\I xdG -= Sr -> / xôG — У
(III) U\l xdG — U; ôy T\I XdG = 9 ’

(IV) S ' n\l xBG = Sr ; 7]/xaG=<9;

(4) We adopt the summation convention.
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(Ve) u\IxdGl=U;  S-n\IxeG2 = S R; (<xÔy T+fiT)\i XÔG = 0 (5)

(Vb)
«I/xôg^ O ;  (S-m +  /cm)|/ x5gc =  0; T|/x5G2 =  0; {ccdy T+fiT)^ x5Gc =  0;

where stress vector S • n and the transversal derivative ду T  are given by

(3.8) S-n = (и;5Д-=1,...,г =  (njOijuix) d,uk)l=1;_ r,

(3.9) ôy T = (nlalh(x)dhT);

n = (nlf nr) is the unit exterior normal to 8G; U, SR, 6, g are given 
functions, oc, fi, к are real positive constants,

8G\ = 8G-~8G[ , 8GC2 = 8G - 8G^, I = (0, 8) (8 < oo).

With the system of conditions (I), ... ,  (V) we associate the following initial 
conditions:

(3.10) и ( + 0) = Uq, д{ и ( +  0) = Ui, T ( + 0) = T0.

In the case of r-dimensional 0  = 1, 2, 3) linear' generalized 
thermomechanics the equations of thermal stresses for the inhomogeneous 
anisotropic medium (cf. [45], p. 21, [49], p. 199) have the form (6)

(3.11) dfu  =  A(x,  d)u + B +{x, d) T+F,

(3.12) t r d?T+dt T=a{x ,  8) T+Q,

where и = (ul5 . . . ,  ur) is the displacement vector field of the medium, T  the 
temperature of the medium, F — {Fx, . . . ,  Fr) the body force, Q the intensity 
of heat source, zr the constant of relaxation (7). The operators A(x,  8), 
a(x, 8), B + (x, 8) are designated by (3.3), ... ,  (3.6) (cf. formulas (3.3), . .., (3.6)). 
For equations (3.11), (3.12) the boundary conditions have the form

(Ï) u\IxdG — Ul T\Ix8G— 0 -,

(Й) A S ' nh xôg ~  SR ; 8y T\j X0G =  — Ig ;

(IÏI) u\i xdG = U ; 8y T\j xdG = —Ig;
(IV) S ' n\i xsg — Sr i T\j x 8G =  0  ;
(Vя)'

U\l xSGj =  U ’ S-n\I xdc2 (3y74-as r+ T Bas ôt T)|/xeG

(5) The boundary condition (V°)3 designates heat flux through the surface (cf. [34], p. 22) 
PG.

(6) Exactly Q — Iq (cf. [45], p. 21), where / =  1+тг5,.
(7) For metals xr — 10“ 11 [sec] (cf. [45], p. 7).
(8) The boundary condition (Vfl)3 follows from the generalized heat low (cf. [45], p. 8).
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.(V*) (S'n + ku)\IxeG'l =0;

T\I xôg2 = 0; {ду T+ as T+zr as 5t T)l/ x0Gc = 0;

where as is the coefficient of thermal expansion,‘/c the constant (cf. [5]). With 
the boundary conditions (I), . . . , (V) we associate the initial conditions:

(3.13) w( + 0) = u0, (d, u)( + 0) = ub  T( + 0) = T0, (0, T)( + 0) = Tl5

where m0, ul5 T0y Tx are given functions on G.
From now on, the boundary-initial value problems with boundary 

conditions (I), ..., (V) ((Ï), . .., (V)) for equations (3.1), (3.2) ((3.11), (3.12)) and 
with initial conditions (3.10), (3.13) we shall call (I), . ..,(V), ((Î), . . . ,  (V)) 
problems of classical (generalized) linear thermomechanics.

Problem (Vе) is the most general problem for thermal stresses equations 
of the classical thermomechanics. Similarly, (Vе) problem is the most general 
problem for thermal stresses equations of the generalized thermomechanics, 
because problems (I), . . . ,(fV) are its particular cases.

In the present paper, the existence and uniqueness of the weak solution 
of problem (Vе) and (V") is proved using the Faedo-Galerkin method in 
Sobolev space 13(1, H l (G)). The proofs of these theorems imply the proofs of 
the theorems about existence and uniqueness of the weak solutions for 
problems (I), (II), (III), (IV), (Vb) and (Î), (ft), (III), (fV), (Vs), respectively.

We shall describe the Faedo-Galerkin method in the next section (see 
the proof of Theorem 4.1).

4. Existence and uniqueness of the solutions of the boundary-initial value 
problems for thermal stresses equations of classical thermomechanics. In the
present section we investigate the solvability of the boundary-initial value 
problems for thermal stresses equations of classical thermomechanics. At 
first, we study problem (Vе) because it is the most general problem for 
equations (3.1), (3.2). In order to do it, we start with the definition of the 
weak solution of this problem.

D efinition 4.1 (a weak solution of problem (Vе)). The pair

(4.1) ( u , T ) e L 2 ( l , V 0) x L 2 ( l , V 1)

will be called a weak solution o f problem (Vе) if (м, T) satisfies the following
identities

(4.2) {d?u(t)\ w) + al (u{t), w) = (WF(t), w) + (B+ T(r), w), VweFo,

(4.3) (S, T(f), v) + a2(T( t ) , v)= T(t)vdÇ + (q{t), и), 4 v e V lt

dG
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with initial conditions

(4.4)
u( + 0) = û0 = u0 — Ф ( + 0), (dt u)(F 0) = = u  ̂— 0), T ( + 0) = 7o,

where forms a± (•, •), <̂ г(', ') and functional Т Р() appearing in (4.2), (4.3) are 
given by :

(4.5) ax (u ( t ) ,  w )  =  J ajhkl (x) 8, uk dh w} dx,
G

(4.6) a2(T{t), v) = f aIh(x)8l Tdhvdx,
G

(4.7) {ТР(Г), w) = f SRwdÇ + (F( t) ,  п>)-(д2Ф(Г), w ) - a 1(0(f), w),
ac2

where <P{t)e H 1 (G) with the property Ф(01^1 = G (г) and

(4.8) Û0eV0, ÛlGL2(G), T0 e Vu  F  e L2 ( / , L2(G)),

qeÛ( I ,  Vf), Sr e L2(I,L2(ÔG)).

By K)» K we denote the spaces defined as follows:

(4.9) F0 = \w e H'{G): w|eGl = 0 ) ,

(4.10) Fj = \ v e H 1(G): (ady v + M \sg = 0).

Let us notice that the spaces V0, L2(G), V* and Kl5 L2(G), V* form (cf. [52], 
[53]) the Gelfand triples. The symbol (•, •) denotes the forms of duality on (F0, 
F0*) and (Fb Vf),  respectively, which on the Cartesian product L2(G) x L2(G) or 
on the product L2(G) x L2(G) becomes the scalar product in the spaces l3(G) or 
L2 (G), respectively.

T h eo rem  4.1. Let 4*F, q satisfy

(4.11) 4>Fe W ' ( I , K ) ,  qeL2(I,V*).

Then there exists a unique weak solution (и, T) of problem (Vя), with the 
properties

(4.12) dt uEL2(l, L2{G)), 82 u e L2( I ,  Vf), dt T E L 2( I ,  V f ) ,

and it depends on the given functions w0, wl5 T0, U, SR, F, q, continuously.
R e m a r k  4.1. In order that the functional T F given by (4.7) ought to 

satisfy condition (4.11), it is sufficient that F e W2 [I, T2(G)) and the extension 
SR, Ü (cf. [20]) to I xG  of the functions SR and U have the properties:

S Rl „ f ( 6 D ' !' ( / ,  Е ( Э Д ) ,  Û | j  ж да  e  Щ 3 ( 1 ,  H l t 2 ( S G ) )  ( 9 ) .

(9) The definition of the space H i/2(dG) may be found in [26], p. 48-53.
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O u t l i n e  of  the  p r o o f  of  T h e o r e m  4.1. The proof is divided into 
two parts. In the first part we proof the existence of the solution of problem 
(Va) using the Faedo-Galerkin method and show the continuous dependence 
of the solution on given data.

In the second part we proof the uniqueness of the solution of above 
problem.

I. Let \wmr. meJS) be a linear, independent and complete system in V0 
and let \vm: meN)  be a linearly independent and complete system in
К  (10)-

We define the Galerkin approximations of the solution (и, T) by
m m

(4.13) um(t) =  Z  yri,(t)wj ; Tm{t)= Z  hmj(t)vj,
i =  i J= 1

where #"'(')> hmj(') are chosen in such a way that they satisfy (cf. [20]) the 
following system of equations:

(4.14) (a,? u” (r), w‘)L2 + a i {um(t), wl) = (VF(l), w‘)L2 + (B* Tm(r), w \ 2,

1 ^  ^  m,

(4.15) (4 T(t), Vi )L 2  + a2(Tm(t), v {) = - -  TMvtdÇ + iqifyvt),
a Jec

1 ^  ^  m,

with initial conditions

(4.16)

m
«"( + 0) = SS = I  ySi-Wj-, (S,u”)( + 0) = Û7 =

j-1
m

T„( + 0) =  7J, = X nSjVj;
j=i

m

= Z
j=i

where

(4.17)

m

Z  y o j W j - + û 0  in V0,
j= i

m

m

Z
j= i

in L2(G),

l - i
in Vx if m oo

The system of equations (4.14), (4.15) with initial conditions (4.16) is a 
systetn (cf. [20]) of ordinary linear differential equations and has a global 
solution on interval /  =  (0, 5) (5 < oo). Thus, the Galerkin approximation

(10) The spaces F0 and Vt (cf. [26]) are separable.
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sequences (um)meN and (Tm)meN are uniquely determined by system (4.14), 
(4.15).

By multiplying equations (4.14) and (4.15) by (d(gf)(0 and hml(t), 
respectively, and taking the sum over / for 1 ^  ^  m, we obtain:

(4.18)
(d,2um(I), d,u’"U))l 2 + a, д,ит(I)) =  (ï'pW , 3,u"(f))l2

+ (B+ TJt), d,u~(t))L2 ,

(4.19) (4 Tm(t), Tm(t))L2 + a2(Tm(t), I'(Tm(r))2J{ + (q(t), Tm(t)).
eo

Using the simple transformation and integration on the interval (0, t) (t ^  5) 
and applying Korn’s second inequality (cf. [8], p. 110), Schwarz’s inequality 
and taking into account the inequalities (cf. [8], p. 99)

J \v\2d£ ^  elHI^i +  c JH I^ , Vuet f^G) ,
ÔG

and

2\ab\ <  £a2 + - b 2, 
e

V e > 0 ,

we get the following estimates: 

(4.20) ||ôfii"(0IIÏ2 + i« 1IKWII?o

+ C1J(||3s«” (s)||^ +  ||U"(s)||^0)ds + C f||r„(s)||?1</s,
0 6

(4.21) ||T„W||f2 + J||T„(s)||J1ds
0

« C 02(||TJ'||?1 +  )ll«(s)llJ; ds)+C2 j||r„(s)||£2ds)
0 0

where a l9 C01, Cl , C02, C2 are various positive constants independent of m. 
After applying Gronwall’s inequality (cf. [26], p. 298) to inequalites (4.21),
(4.20) we get:

\\Tm(t)\\2L2 ^ C 02C2 for апУ ™e N  and fe[0,  ,9],

11^“m(011̂ 2 ^  Q>i C1 for any m e N  and f e [ 0, 9]. *

(4.22)

(4.23)
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The estimates (4.22), (4.23), (4.20), (4.21) imply:
(um)meN bounded in 13(1, V0),

(4.24) (dt um)meN bounded in L2(/, 13(G)),
(Tm)meN bounded in L2(/, Vx) and in L2(/, L2(G)).

Consequently, there exist weakly convergent subsequences (u”1"), (dt iTn), 
(TmJ  of the sequences (um)meN, (dt um)meN, (Tm)mçN (they will be denoted by the 
same symbols as the Galerkin sequences, i.e, (un)„eN, (dtun)neN, (Tn)neN). 
Without loss of generality we may assume that:

(m")-^z (weakly) in L2(/, V0),

(4.25) (dt un) -^z '  (weakly) in L2(/, L2(G)),

(T„) — (weakly) in L2(/, Vx) and in L2(/, L2(G))

for n-> oo. Obviously, z' = ôtz (cf. [53]) and since m"( + 0) -> z(0) in V0 we get 
z(0) = u0. Let ФеС°°(/) such that Ф(£) = 0. We put Ф'(-) = Ф() w', Ф,() 
= Ф(-)гг.

Multiplying (4.14), (4.15) by Ф(), taking m = n ^ l  and integrating by 
parts on the interval (0, #) we have:

(4.26) - ] ( d t un(t), dt ^ { t))L2dt + ) a i (uH(t)9 Ф1 (0)df

= J ( ^ f (0, Ф'(0)£2 ^  +  ( ^ мп( + 0), Ф'(0))^2 + |(В + r B(f), &l{t))L2dt,

(4.27) (т„(г), 4 Ф/ (0)L2 ̂  + L 2(r„(0,

P TH(t)0i{t)dZ dt+ \ (q(t), Ф,(0)Л + (Гя(0),Ф,(0))^.

In view of (4.25), taking n -* oo in (4.26), (4.27) we get:
a »

(4.28) —j(d,z(t), dt <Pl(t))dt + §ax (z(t), <Pl(t))dt
о о

& S

= («,, Ф'(0)) +  ](4>F(t), 4>‘(t))dt + ](B+ Z(t), <P‘(t))dt,

(4.29) -

s s

(Z(t), S,4>,(t))dt+ I a2(Z(t), <P,(t))dt

dG

dt -T («М, ф , ( 0 ) * + ( то, Ф,(0)).
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In particular, the above equations are true for any ФеСо (/). Thus it 
follows from (4.26)-(4.29) that:

(4.30)

(4.31)

(dt2z(r), wl) ± a x(z{t), w') =  ( ^ ( 0 ,  wl) + (B+Z(t), w%

(4 Z (r), vt) + a2 (Z (Г), Vt) = -  -  Z (Г) Vi + (q (t), vt)
a J

GG

for arbitrary wle{wm: me N], Vie{vm\ me IS}.
From (4.28), (4.29) after integrating by parts we obtain:

(4.32) (4z(0), wl) 0 ( 0) =  (wj, w‘)0(O),

(4.33) (Z(O),vl)0{O) = (To,v l)4>{O)

for any wl, Vi\ so dtz(0) = ût , Z(0) = T0.
Therefore the pair (z, Z) is the weak solution of problem (Ve) in the 

meaning of Definition 1. Under the foregoing assumptions it can be proved 
(cf. [26], Chapter 1) that:

z e C ( I , V 0), dt z eC ( l ,  L2(G)), Z e C ( l ,  L2(G)).

From inequality (4.21), after taking n —> oo and using a simple 
transformation, we obtain:

& S- 9-

(4.34) J||Z(f)||^I *  + J I |5 ,Z ( f ) | |J .* $ C 2[||To||J1 + J||«(f)||J .clt],
0 o 1 ô 1

where C2 is a constant independent of m.
Similarly, taking m -> oo in inequality (4.20) and using Gronwall’s 

inequality, we get:

(4.35) \\d,z(t)\\l2 + \\z(t)\\}0

« C 1[||Û1||^  + ||«0||J0 + ||'Pf (0)||^o +  |||« 'H s) l lJ j*  + p s ï ' r (s)||î.ds

t II^oIIfj + \\\q(t)\\v* ^r]-
о 1

Integrating (4.35) on the interval (0, t), using the definition of the 
functional TF( ) and the trace theorem (cf. [26], [21] and [3], p. 376, formula 
(7.17)), we obtain estimates, which show that the solution (n, T) depends 
continuously on given data.

II. The proof of the uniqueness of the solution to the above problem is 
performed (cf. [20]) classicaly and is based on Korn’s second inequality (cf. 
[8], p. 110, [12], p. 75, (2.13)).
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Now we introduce the existence-uniqueness theorems for the boundary- 
initial problems (I), (II), (III), (IV), (Wb).*

Problem (I) with homogeneous boundary conditions is a particular case 
of (cG2 — 0 ,  ->• oo) problem (Vfl). Therefore, we get the definition of the
solution of this problem from Definition 4.1 putting

(4.36) V0 = Hl(G), Vj. = Hj(G), Ф (t) = 0, WF(t) = F(t)

and substituting the forms a1(-, •), a2(-, •) by forms (A (-, v) -, •) («(•, d) -, •) 
and neglecting the integral," which is on the right-hand side of (4.3). The 
following (cf. [15], [19]) theorem is true.

T h e o r e m  4 . 2 .  Let u0, r q ,  T0, F, q satisfy

u0eH'0(G), ul £ L2(G), .. T0£ H ‘ (G), F e I i { I , L2(G)),
( 4 . 3 7 )

qsli( l ,  H-'(G)).
Then problem (I) has a unique solution (и, 7)

(и, Л е 7 .2(/, Hj(G))x(L2(7, H'0(G))nL2(I, L2(G)))

with properties

(4.38) ôt ueL2(l, L2(G)), d2 ue L2 (I, H~ v (G)), о, Т е L2 ( / , H ~1 (G))
»

and it depends continuously on given data u0, ut , T0, F, q. }
The proof of Theorem 4.2 runs similarly to the proof of Theorem 4.1. In 

order to obtain the suitable estimations of sequences of the Galerkin 
approximation we apply to the strong elliptic operators A (-, (?) and a (-, d) 
Gârding’s inequality (cf. [33], p. 192, (2.16)).

Problem (II) with homogeneous boundary conditions (II)2 is the specific 
case (5GX = 0 , ot -*• oo) of problem (Va).

Putting in Definition 4.1

(4.39)
ф(0 = 0, w) = f SRwdÇ + (F{t),w),

ec,2

V, = [veH 1 (G); dyv\eG = 0)

and omiting the integral on the right-hand side of (4.3), we have the 
definition of the solution of problem (II). For this problem the following 
theorem is true:

T heo rem  4.3. Suppose that

uBe H l (G), u ,eL2(G), T0eV„ 'PFeW 21 (/, (H‘ (G))*), q s V U .V ? ) -

Then there exists a solution (и, T ) of problem (II)

(4.40) ' (u, T)eL2(I, U '(G ))xL2(I, V2)
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with properties

(4.41) dt u e l? ( l ,  L2{G)), d?ueÛ (I, H 1 (G)*), dt T eL 2{l, Vf),

where и is designated with occuracy to the rigid displacement.
The proof of Theorem 4.3 follows from the first part of the proof of 

Theorem 4.1.
Problem (III) with homogeneous .boundary conditions (III) is a 

particular case (dG2 = 0 , a — x )  of problem (V )̂. So, in that case putting in 
Definition 4.1

(4.42)

VB = HUG), Vt = \veH'(G), ?,v\ee = 0>, <P(/) = 0, <Ff (/) = F(i)

and substituting the form a(-, ■) by the form (A(-, d) -, •) and neglecting the 
integral occurring on the right-side of (4.3) we obtain the definition of the 
solution of problem (III).

T heo rem  4.4. Let u0, uu  T0, F, q satisfy

(4.43)
u0e Ho(G), «, e t 2(C), T0e V u  F e L2 (1, L2 (G)), qeZ?(/, И,*).

Then problem (III) has a unique solution (и, T)

(4.44) (u ,T ) e  L2 (I, H i  (G)) x I2 (/, Vx) 

with properties

(4.45) dt ueL2(l, L2(G)), d fu e l} ( l ,  H ~ l (G)), dt T eL 2{I, Vf)

and it depends continuously on given data u0, ut , T0, F, q.
, The proof of Theorem 4.4 runs similarly to the proof of Theorem 4.1. 

The difference lies in the fact that in order to get the suitable estimations the 
sequences of the Galerkin approximations we apply Garding’s (cf. [20]) 
inequality to the strong elliptic operator A(-, d).

The definition of the solution of problem (IV) with homogeneous 
boundary conditions (IV)2 as a particular case {dGx = 0 , ($.-* x )  of problem 
(Va) is obtained from Definition 4.1 taking

К, = H ‘(G), F ,= H j(G ) , Ф(г) =  0,

(4'46) CPF(r),w )=  f SRwd^ + (F(t), w), .
d G 2

exchanging the form a2(% •) by the form (a(-, d) -, •) and neglecting the 
integral occurring on the right-hand side of (4.3).
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T heorem  4.5. Suppose that

u0e H 1 (G), UleL2(G), T0e Hj(G), 4>F e W} (/, ( H '  (G))*), qeL2(I, H~'(G)). 

Then there exists a solution (и, T) of problem (IV)

(4.47) (и, T ) e L 2 ( /, H 1 {G)) x L2(/, Hj(G)) 

with properties

(4.48) ôt ue l3 (I ,  T2 (G)), д2 и e  L2 ( i t ( H 1 (G))*), dt Te L2(I, H ~ l (G)),

where и is designated with occuracy to the rigid displacement.
The proof of Theorem 4.5 follows from the first part of the proof of 

Theorem 4.1. The definition of problem (Vb) is a modification of Definition 
4.1.

Putting in Definition 4.1

V0 =  {w: w e H ' i G ) :  w \eG =  0}, Ф(0 =  0,
(4.49)

К = {v: ve H 1 (G): ^ = 0 ) ,  4>F(t) = 0,

and adding on the right-hand side of (4.2) the term of the form —k \ uwdÇ
dGcx

and exchanging dG by 0Gc2 in the integral taking place in formula (4.3) we get 
the definition of problem (Vb). For this problem the following theorem is true:

T heorem  4.6. Let u0, wl9 T0, F, q satisfy

(4.50)
u0eV0, UleL2(G), T0eV „  F eW 2‘ (I, L2(G)), q e Û (I ,  Vf).
Then problem (Vb) has a unique solution («, 7)

(4.51) (m, T )e l î ( I ,  V0)x I? (I ,  V,) 

with properties
(4.52) B,ueL2(I, L2(G)), d2ueL2(I, V0%  d ,TeL 2(I,V*)

and it depends continuously on given data u0, ui , T0. F, q.
The proof of Theorem 4.6 runs similarly as the proof of Theorem 4.1.

5. Existence and uniqueness of the solution of the boundary-initial value 
problems for thermal stresses equations of generalized thermomechanics. In
this section we formulate the existence-uniqueness theorems of the boundary- 
initial value problems for the thermal stresses equations of generalized 
thermomechanics. At first, we consider problem (Va) because it is the most 
general problem for equations (3.11), (3.12). Now, we proceede to the‘ 
definition of a weak solution of problem (Vfl).

 ̂ — Prace Matematyczne 27.1
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D efinition 5.1. (a weak solution of problem (Ve)). The pair

(5.1) (u, T )e L2(I, V0) x L2( / , V f

will be called a weak solution of problem (Vfl) if (и , T) satisfies the following 
identities:

(5.2) (d?u{t),w) + al (u(t),w) = (4'F{t),w) + (B+ T{t),w), V w eF0,

(5.3) xr(df T(t), v) + (dt T(t), v) + a2(T(t), v)

+ Tr<xs J dt T (t) vdc, + ols j  T (t) vdÇ = (Q(t), v), V v e  Vx
ÔG dG

with initial conditions

u( + 0) =  u0 = u0 — Ф(0); (<3fw)( + 0) = ûl = иг - д гФ(0),
(5.4)

T( + 0) = T0, (dt T)( + Q )=T1,

where forms ax{-, •), a2(-, j  and functional ¥V(f) occurring in (5.2), (5.3) are 
given by (4.5), (4.6), (4.7) and the spaces V0 and Vx are defined as follows:

V0 = {w e H l (G); w\dGl = 0},

Vx = {v: veH 'iG)}

û0eV0, u1eL2(G), T0 e Vx, T1eL2(G),

F e L2(I, L2(G)), Q e I?(I, L2(G% Sr e L2{I, L2(dG)),

where Ф(г)еH 1 (G) with the property (cf. [8]) Ф(г)|5Gl = U(t).
Let us notice first that in this case the spaces V0, l3(G), V*, Vx, L2(G), 

Vf also form (cf. [52], [53]) Gelfand triples.
In this case (cf. [20], [19]) the following theorem is true.
T heorem 5.1. Let T0, Tx, 4*F, Q satisfy

(5.8) a(-,d)T0EL2(G), T1eV l , ^ e W ^ I ,  Vf), Q eW 2l (I, L2(G)).

Then there exists a unique weak solution (и, T) of problem (Ve) with the 
properties

St u s L 2(Iy Û (G)), df ueL2 (/, У0*),
(5.9)

S .T e lH l ,  K,), df e l} ( I ,  Û (G)),

and it depends continuously on given data u0, ux, T0, Tx, U, SR, F, Q.
R em ark  5.1. In order the functional T F to satisfy conditions (5.9), the 

functions F, SR, U ought to satisfy the conditions mentioned in Remark 4.1.
The proof of Theorem 5.1 is (cf. [20]) analogous to the proof of 

Theorem 4.1.

(5.5)

(5.6) 

and

(5.7)
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Now wê  introduce the existence-uniqueness theorems for problems (I), 
(II), (HI), (IV), (V*). We obtain the definitions of these problems from 
Definition 5.1 using a similar consideration as in Section 4. We restrict 
ourselves to the formulation of the theorems for these boundary-initial value 
problems.

Theorem 5.2. I f  we assume that

iioeHj(G), MieL2(G), T0e H l0(G), Txzl3{G),

then problem (I) with homogeneous boundary conditions (I) possesses a unique 
solution (и, T)

(5.10) (u, T)eL2(l, H q(G)) x L2(/, Н Ц Щ

with properties

dt u e l 3 (/, L2(G)), ê2«eL2(/, H 1 (G)), 

dt T eL 2(l, L2(G)), d2 Tel3(l ,  H ~ l (G)),

and it depends continuously on given data u0, m1s T0, 7], F, Q.
The proof of Theorem 5.2 follows from (cf. [16]) the proof of Theorem

(5.11)

5.1.

(5.12)

Theorem 5.3. Suppose that

u „ e H ' ( G ) ,  и , e L2 (G), T q e H 1 (G), T, e L2 (G),

4>T e  W2' (I , ( H 1 ( G ) ) * ) ,  Q s W ^ I ,  L2 ( G ) ) ,  9 e  ^ 2  (/, iHSG)).

Then there exists a solution (и, T) of problem (II)

(5.13)

with properties

(u, T)eÜ(I ,  HUG)) xL2(l, H'(Gj)

(5.14)
S,ueL2(I, Z.2(G)), $ u e I } ( l , ( H l (Gtf), 

d. T e l } (I, L2(G)), Л,2 Те L2(/, (H‘ (G))*),

w/ierc u is designated with accuracy to the rigid displacement (cf. [34], [8]).
The proof of Theorem 5.3 follows from (cf. [20]) the first part of proof 

of Theorem 5.1.
Theorem 5.4. Let u0, щ , T0, 7], F, Q, g satisfy

u0eH o (G), ut e 13(G), T0eH'(G), Tt eL2(G),

FeL2(I,L2(G)), QeW2l (I,L2(G)), geW2> (I, L2(SG)).

Then problem (Ш) with homogeneous boundary condition (IIIi) has a 
unique solution (и, T)

(5-16) (u, T)eL2(l, H'0{G))y.B(l, H ‘ (G))
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with properties

d ,u e l} ( l ,  L2 ( G) ) ,  B?ueL2(I, H ~'(G )),

(5 I7) B,TeL2(I ,L 2(G)), P2 T e l} ( l ,  (H' (G))*),

and it depends continuously on given data u0, wl9 T0, Tl9 F, Q.
The proof of Theorem 5.4 runs similarly as the proof of Theorem 5.1. 
T heorem 5.5. Suppose that

u0eH '(G h  ul S L2(G), T0eHl(G), T,eL2(G),

<518) Q eL2(I,L2(G) ).

Then there exists a solution (и, T) of problem (IV) with homogeneous 
boundary condition (IV)

(5.19) (u, T )e L2(I, H 1 (G)) x L2(/, Hl(G))

which has the following properties

B ,ueI2(I,L2 (G)), 5,2 u e I } ( l , ( H 1 (G))*),

(5'20)  ̂ 8, T e l } (I, 13(G)), 82 T e l} ( l ,  H ^ 1(G)),

where и is designated with occuracy to the rigid displacement (cf. [34], [8]).
The proof of Theorem 5.5 follows from the first part of the proof of 

Theorem 5.1. In the case of problem (V̂ ) the following theorem is true. 
T heorem 5.6. Let u0, ut , T0, Tt , F, Q satisfy

uo £ Vo, u1 e 1} (G), T0eV u  Ti e L2(G>, 

a(-,-)T0eL2(G), ‘ F e  W2' (/, L2(G)), Q e W2l (I, L2 (G)).

Then problem (V ) has a unique solution (и, T),

(5.22) (u ,T )e L 2(I ,V0)x L 2(I ,V 1),

with properties

д, и e  I f  ( I , ,1} (G) ) ,  d ? u e l 3 { I ,  V0*),
(5.23)

dt T eL 2(I, Vt), d2 T eL 2(l, L2(G)),

and it depends continuously on given data u0, ил , T0, Tl5 F, Q.
R em ark  5.2. The spaces V0 and V1 appearing in Theorem 5.6 are given 

as follows: V0 by formula (5.5) and V1 = \v: v e H l (G): v\âGl = 0{.

The proof of Theorem 5.6 runs similarly (cf. [20]) as the proof of 
Theorem 5.1.

6. Regularity of the solution of the boundary-initial value problems for 
thermal stresses equations of classical thermomechanics. In this section we
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introduce the theorems about the regularity of the solutions for the 
boundary-initial value problems for thermal stresses equations of classical 
thermomechanics.

At first, we formulate two theorems about regularity of the solution to 
problem (I).

T heorem 6.1. (regularity with respect to t). I f  the following supplementary 
conditions are satisfied

(6.1) F e  » ? -* ( / ,  L2(G)), qe  W2~l (/, H ~1 (G)), к »  1,

(6.2) <")'h(0)6Ht,(G) for / =  0, . . . . /с —1; cfu(0)e 1}(G);

(6.3) a ; T ( 0 ) e H ‘ ( G )  for 1 = 0,

then under these additional hypothesis the solution (и, T) of problem (I) has the 
additional regularity

(и, Л е Ж Г Ч Л
(6.4)

dfueL2(I, i f  (G)), dî + 1ueL2(l, Я " 1 (G)), d fT e L 2(l, Я -1 (G)).

R em ark  6.1. Conditions (6.1)—(6.3) are conditions of the regularity for 
u0, Щ, T0, T(0), q(0).

The proof of Theorem 6.1 is carried out using the principle of 
mathematical induction and basing (cf. [17], [18]) on Theorem 4.2.

T heorem 6.2. (regularity with respect to x). Let u0, ul , T0, F, q be so 
regular that the solution (и, T) of problem (I) satisfies the condition

(6-5) (и, T) e W2k (1, H i  (G)) x W} (I, HJ (G)).

Moreover, it is assumed that

(6.6) F eW%~2(l, H m(G)), q e W Ï~ l (I, Hm(G)), m >  1.

Then under this additional hypothesis the solution (и, T) of problem (I) has 
the additional regularity

(6.7) (u, T)eW%~2l(I, H 2l(G )n H 10{ G ) )x W ^ l(l, H 2l+l {G) n  H l0(G))

for le jy  satisfying the conditions 21 ^  к and 21—1 ^  m./
The above theorem follows from regularity theorems for elliptic (cf. [53], 

[32]) differential operator.
Example 6.1. From Theorems 6.1, 6.2 and Sobolev’s imbedding 

theorem (n ) (cf. [48], p. 77-78, [53], p. 184) it follows that if the following

(u ) w ‘((0, ,9), ^ 2'(G ))c C r( [ 0 J ] )x G )  if / - / '  > (r + l) /2 ,
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conditions are satisfied:

F e W P ( l ,  L2(Gj)n H 5(G)),

(6.8) q = W2l , (I, H 5(G», d;2</6L2( / , H - ‘ (G)),

u0eH'02(G), ul e H ' 2i.G)n,H!o'{G), T0e H 23(G) n  H 23(G), 

F (0 )e H j‘ (G), d,F(0)‘e H lo{G)nHHG), d2 F(0)e H90(G), 

e ïF (0 )eH s (G )nHl(G), % F(0)eHl(G), df F(0)e H6(G) n  H30(G), 

cfF(0)sHi(G), d] F{0)EH4(G )n H 3(G), 3f F(0)e H30(G), 
J?F (0 )eH ! (C) nH j(G ),

5,loF(0)eH j(G ), ê ; 'F (  0 ) e ^ 2(G), <j(0)e/f21 (G) n  H J3 (G),

a,4 (0)eH I9(G )n H 2I(G), a,2î ( 0 ) e f l17(G )n H ‘, (G),

d3,(0 )e H l5(G )n H ‘7 G, <*<r(0)eЯ '3(G )nH >5(G), 

$ î (0)eJ;1'( G ) n H ;J(C),

ô,6î(0)G H9(G) n  H J1 (G), Й,7 </(0)e H7 (G) n  H90(G), d? q(0)eH 5(G) n H 70(G),

. d?q(0)eH3(G)nHUG), d}0q(0)e H 1 (G) пН Ц С ), дУ q(0)e H'0(G).

Then the solution (и, T) of problem (I) for homogeneous izotropic 
medium (r = 3) (12) has the regularity

(6.10) (u, T )e C 2([0, 9] xG) x C4([0, ,9]xG).

Now, we mention the regularity theorems for problem (Va).
Theorem 6.3 (regularity with respect to t). I f  the following supplementary 

conditions are satisfied

(6.11) ¥VeW ?(/, Vf), q e W t H l ,  Vf), k > \ .

6lt u(0)eVo for l = 0, ... ,  k - i \  djfu(0)et?(G),
( 6. 12)

^  7(0)6 ^  for l = 0, ... ,  k — \,

then the solution (и, T) of problem (V") has the additional regularity

(6-13) (и, T ) е \ ¥ Г 1(1, V0) x W r i (i, Vt),

d?ueL2(l, L2(G)), df + i uel3{I, Vf), д^ТеЬ2{1, Vf).

(12) In this case A{-, 5) =  A(c) =  (Â + /i)graddiv + /rxl, B+{■, д) =  B+{д) =  у grad, a(-, 8) 
=  a{d) =  A, where A =  d2n (cf. [34], [44]), j  =  1, . . . ,  r.
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R em ark  6.2. In order that the functional ¥V() to satisfy conditions
(6.11) it is sufficient that F e W ^ I ,  T2(G)) and the extensions Ü, SR (cf. [20]) 
to I x G of the functions U ana SR have the properties

Ü\IxdGe W* + 2(I, H l/2(dG)), S\IxeGeW *(l, L2(dG)), k ^ l .

The proof of Theorem 6.3 is similar to the proof of Theorem 6.1. 
Theorem 6.4. (regularity with respect to x). Let u0, ult T0, T F, q be so 

regular that the solution (и, T) of problem (Vfl) satisfies the following 
conditions:

(6.14) ( u , T ) e W î y , V 0) x .W ÎV ,V 1).

Moreover, we assume that

(6.15) WFE W t 2(l, Hm(G)), ' q e W } - 1^ ,  Hm{G)), m > l .

Then under this additional hypothesis the solution of problem (Ve) has the 
additional regularity

(6.16) (u, T )e W Ï~ 2l( l , H 2l(G))xW£~l{I, H 2l+1(G))

for l e N  satisfying the conditions 21 ^  k, 21— 1 ^  m, where Q a  G.
The above theorem follows from the theorem of internal smoothness for 

the elliptic operators (cf. [12], p. 24, [32], p. 235).
R em ark  6.3. The proofs of the theorems on regularity with respect to t 

of the solution of problems (II), (III), (IV), (Vb) run similiarly to the proofs of 
Theorems 6.1 and 6.3. The proofs of the theorems on regularity with respect 
to x of the above problems are analogous to the proof of the Theorems 6.2,
6.4.

7. Regularity of the solution of the boundary-initial value problems for 
thermal stresses equations of generalized thermomechanics. Below we 
introduce theorems about the regularity of the solution of the boundary- 
initial value problems for thermal stresses equations of generalized 
thermomechanics.

In the case of problem (Г) with homogeneous boundary conditions (Г) 
the following theorems (cf. [19]) are true:

Theorem 7.1 (regularity with respect to t). I f  the following supplementary 
conditions are satisfied

(7.1) FeW$~'(I ,  L2(G)), Q e W f - ^ I ,  L2(G)), k > l ,

(7.2) 3n (0)eH j(G ) for l = 0, . .. .  k - 1 ;  % u(0)eZ?(G),

(7.3) ff,T(0)eH'o(G) for 1 = 0, . . . , k - l ;  T(0)e L2(G),

then under this additional hypothesis the solution («, T) of problem (Ï) has the
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additional regularity

(и, T ) e W r l (/, Hh(G)) x W2k- 1 (I, HJ (G)),
(7.4) dkueL2(I, L2(G)), ôk+1ueL2(l, H ~ 1(G)),

dfTeL2(/, L2(G)), dk + 1 T El3(l, H ~ l (G)).

The proof of the above theorem runs in the same way as the proof of 
Theorem 6.1.

Theorem 7.2. (regularity with respect to x). Let u0, ux, T0, Tx, F, Q be 
so regular that the solution (и, T) of problem (I) satisfies the following 
conditions

(7.5) (и, T) e W% (I , HUG)) x W}(I, HUG)).

Moreover, we assume

(7.6) F e W k- 2( I ,H m(G)), Q e W k- 2( l ,H m(G)), m ^ l .

Then under this additional hypothesis the solution (и, T) of problem (I) has 
the additional regularity

(7.7) (и, T) e W t 21 (/, H 2‘ (G) n  H U G ) )  x W $ -2,(I, H 2I+1 (G) n  H j (G))

for l e N  satisfying the conditions: 21 ^  к and 21— 1 ^  m.
The proof of Theorem 7.2 is similar to the proof of Theorem 6.2. 
Now we formulate the regularity theorems for problem (Vя).
Theorem 7.3 (regularity with respect to t). I f  the following supplementary 

conditions are satisfied

(7.8) T F e W2k (I, V0*), Q e Wk (I, L2 (G)), k >  1,

(7.9) dlt u(0)EV0 for l = 0, . .. ,  к — 1, dku(0)El}{G),

(7.10) 3 7 ( 0 ) 6 ^  /or l = 0 , . . . , k - l ,  df T (0)e i f  (G),

then the solution (и, T) o f problem (Vя) has the additional regularity

{u, T ) E W r i (I , Vo)xWk~l (I, Vl),

(7.11) dfuEL2{I, 13(G)), df + l ueL2(I, K0*), 

df T e I3(I, 13(G)), df+1 T e l3(I, Vf).

R em ark  7.1. In order that the functional T F() should satisfy condition
(7.8) it is sufficient that F, SR, U satisfy the same conditions as in Remark
6.1.

The proof of Theorem 7.3 is similar to the proof of Theorem 6.3. 
Theorem 7.4. (regularity with respect to x). Let u0, ux, TQ, Tx, F, Q be
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so regular that the solution {и, T ) of problem (Vя) satisfies the conditions

(7.12) («, T )e W p I ,  V0)x W Ï( I ,  V,).

Moreover, we assume

(7.13) ^ е ^ Г 2(/, Hm(G)), Q e W Ï~ 2(l, Hm(G)), m ^ l .

Then under this additional hypothesis the solution of problem (Vя) has the 
additional regularity

(7.14) {u, T )e W Ï~ 2l(I, H 2l{G))xW%~2l(l, H 2l+1{G))

for le N  satisfying the conditions 21 ^  k, 21— 1 ^  m, where G c= G.
The above theorems follow from the theorem on internal smoothness for 

the elliptic operators (cf. [12], p. 24, [32], p. 235).
R em ark  7.2. The proofs of the theorems of regularity with respect to t 

of the solution of problems (Й), (III), (IV), (V*) run similiarly to the proofs of 
Theorems 7.1 and 7.3.

The proofs of the theorems of regularity with respect to x of the above 
problems are analogous to the proofs of the Theorems 7.3 and 7.4.
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