On two linear topologies on Orlicz spaces $L^{*\varphi}$. I

Abstract. In this paper we consider two linear topologies on Orlicz spaces L_I^{*p} , where φ is a φ -function and E is a finite-dimensional Euclidean space with the usual Lebesgue measure. We denote these topologies by $\mathcal{F}^{\triangleleft \varphi}$ and $\mathcal{F}^{\triangleleft \varphi}$. In § 1 we prove that if φ is an N-function, then these topologies are locally convex. In § 2 we compare the topologies $\mathcal{F}^{\triangleleft \varphi}$ and $\mathcal{F}^{\triangleleft \varphi}$ with the topology generated by the E-norm $||\cdot||_{\varphi}$ in $L_E^{*\varphi}$, and in § 3 compare the φ -modular convergence of sequences (x_n) in $L_E^{*\varphi}$ with convergence in the topologies $\mathcal{F}^{\triangleleft \varphi}$ and $\mathcal{F}^{\triangleleft \varphi}$. Finally, in § 4 and § 5 we prove that the spaces $(L_E^{*\varphi}, \mathcal{F}^{\triangleleft \varphi})$ and $(L_E^{*\varphi}, \mathcal{F}^{\triangleleft \varphi})$ are separable and complete.

In the case where φ is the Orlicz function which satisfies the Δ_2 -condition and E is a finite non-atomic measure space, then the topology $\mathscr{F}^{\leqslant \varphi}$ was considered by Ph. Turpin ([8], Chapter I, Theorem 1.2.2).

§ 0. Introduction.

0.1. φ -functions.

0.1.1. It is said that a function $\varphi \colon [0, \infty) \to [0, \infty)$ is a φ -function if it is continuous, non-decreasing and such that $\varphi(0) = 0$, $\varphi(u) > 0$ for u > 0 and $\varphi(u) \to \infty$ for $u \to \infty$.

0.1.2. A φ -function φ is called an *N*-function if it admits the representation

$$\varphi(u) = \int_{0}^{u} p(t) dt,$$

where p(t) is right-continuous for $t \ge 0$, p(0) = 0, p(t) > 0 for t > 0, non-decreasing and $p(t) \to \infty$ for $t \to \infty$ ([2], p. 6).

It is sometimes useful to use the following definition of an N-function: A φ -function φ is called an N-function if φ is convex and satisfies the conditions

$$\lim_{u\to 0}\frac{\varphi(u)}{u}=0,$$

$$\lim_{u\to\infty}\frac{\varphi(u)}{u}=\infty \quad ([2], \text{ p. 9}).$$

- **0.1.3.** Let φ and ψ be φ -functions.
- (a) It is wrote $\psi \prec \psi$ if there exist constants a > 0 and b > 0 such that

$$\psi(u) \leqslant a\varphi(bu)$$
 for $u \geqslant 0$.

(b) We shall say that a φ -function φ increases essentially more rapidly than a φ -function ψ and shall write $\psi \leqslant \varphi$ if, for an arbitrary c > 0,

$$\lim_{u\to 0}\frac{\psi(cu)}{\varphi(u)}=0\quad \text{ and }\quad \lim_{u\to \infty}\frac{\psi(cu)}{\varphi(u)}=0\quad ([2],\ \text{p. 144; [5]}).$$

(c) We shall write $\psi \triangleleft \varphi$ if, for an arbitrary c > 0, there exists a constant d > 0 such that

$$\psi(cu) \leqslant d\varphi(u)$$
 for $u \geqslant 0$.

It is easy to check that if $\psi \leqslant \varphi$, then $\psi \triangleleft \varphi$ ([5]).

(d) It is said that φ satisfies the Δ_2 -condition if there exists a constant d>1 such that

$$\varphi(2u) \leqslant d\varphi(u)$$
 for $u \geqslant 0$ ([2], p. 23).

(e) It is said that φ satisfies the V_2 -condition for large (small) values of u if there exist constants d>1 and $u_0>0$ such that

$$2\varphi(u) \leqslant \varphi(du)$$
 for $u \geqslant u_0$ $(u \leqslant u_0)$.

- 0.2. Orlicz spaces.
- 0.2.1. Let E be a finite-dimensional Euclidean space with the usual Lebesgue measure. For a φ -function φ and a real valued function x defined and measurable on E we write

$$\varrho_{\varphi}(x) = \int_{E} \varphi(|x(t)|) dt.$$

By $L^{*\varphi}$ we denote the linear space of those functions x for which $\varrho_{\varphi}(\lambda x) < \infty$ for some $\lambda > 0$, and by $L^{0\varphi}$ the linear space of those functions x for which $\varrho_{\varphi}(\lambda x) < \infty$ for all $\lambda > 0$ ([3]). It is well known that if $\psi < \varphi$, then $L^{*\varphi} \subset L^{*\psi}$ ([3]). It is easy to verify that if $\psi < \varphi$, then $L^{*\varphi} \subset L^{0\psi}$ ([5], proof of Theorem 1).

0.2.2. Let φ be a φ -function. A sequence (x_n) in $L^{*_{\varphi}}$ is called φ -modular convergent to $x \in L^{*_{\varphi}}$ and is denoted by

$$x_n \stackrel{\varphi}{\rightarrow} x$$

if there exists a constant $\lambda_0 > 0$ such that $\varrho_{\varphi}(\lambda_0(x_n - x)) \to 0$ ([3]).

0.2.3. In $L^{*\varphi}$ we may define an *F-norm*:

$$||x||_{\varphi} = \inf \{\lambda > 0 \colon \varrho_{\varphi}(x/\lambda) \leqslant \lambda \}.$$

The space $L^{*\varphi}$ is complete with respect to the F-norm $\| \|_{\varphi}$. Moreover, if φ is an N-function, then in $L^{*\varphi}$ we may define also a B-norm:

$$||x||_{\varphi}^{0}=\inf\{\lambda>0: \varrho_{\varphi}(x/\lambda)\leqslant 1\};$$

this norm is equivalent to the *F*-norm $\| \|_{\varphi}$ ([4]).

Throughout the paper we shall denote by \mathscr{T}_{φ} the topology on $L^{*\varphi}$ generated by the F-norm $\|\cdot\|_{\varphi}$.

- 0.2.4. Theorem. Let (x_n) be a sequence in $L^{*\varphi}$. Then
- (a) $||x_n||_{\varphi} \to 0$ implies $x_n \stackrel{\varphi}{\to} 0$,
- (b) $x_n \xrightarrow{\varphi} 0$ implies $||x_n||_{\varphi} \to 0$ if and only if φ satisfies the Δ_2 -condition ([3]).
- 0.3. Some equalities for Orlicz spaces. Let φ be a φ -function. Denote by $\Psi^{\triangleleft \varphi}(\Psi^{\triangleleft \varphi})$ the set of all φ -functions ψ such that $\psi \triangleleft \varphi$ ($\psi \triangleleft \varphi$). It is shown in [5], Theorem 2, that

$$L^{*_{\varphi}} = \bigcap_{\varphi \in \Psi \lessdot \varphi} L^{\circ \varphi}.$$

In the case where φ is an Orlicz function which satisfies the Δ_2 -condition and E is a finite non-atomic measure space, then the above equality was obtained by Ph. Turpin ([8], Chapter I, Theorem 1.2.2). Since $L^{*\varphi} \subset L^{\circ \varphi}$ for each $\psi \in \Psi^{\triangleleft \varphi}$ and $\Psi^{\triangleleft \varphi} \subset \Psi^{\triangleleft \varphi}$, it follows from equality (1) that

$$(2) L^{*\varphi} = \bigcap_{w \in \Psi \triangleleft \varphi} L^{\circ \Psi}.$$

- 0.4. Topology of convergence in measure.
- 0.4.1. Let S be the linear space of real-valued functions defined and measurable on E. Then in S a pseudo-modular may be defined as follows:

$$\varrho_0(x) = |\{t \in E : |x(t)| > 1\}|.$$

Let S_0 be the subspace of S consisting of all functions which are almost everywhere finite valued. Then in S_0 an F-norm $\| \cdot \|_0$ may be defined as follows:

$$||x||_0 = \inf \{ \varepsilon > 0 : |\{ t \in E : |x(t)| > \varepsilon \}| \le \varepsilon \}.$$

Throughout this paper we shall denote by \mathcal{F}_0 the topology on S_0 generated by the F-norm $\|\cdot\|_0$.

It is seen that a sequence (x_n) in S_0 is convergent to $x \in S_0$ in the topology \mathcal{F}_0 if and only if a sequence (x_n) is convergent to x in measure. Moreover, for every φ -function φ we have that $L^{*\varphi} \subset S_0$ and that the topology \mathcal{F}_{φ} is strictly finer than the topology \mathcal{F}_0 restricted to $L^{*\varphi}$ ([8], p. 30).

0.4.2. Theorem. The space (S_0, \mathcal{F}_0) is complete ([8], p. 30).

0.4.3. Theorem. Let φ be a φ -function. Then the balls

$$\overline{K}_{\varphi}(r) = \{x \in L^{*\varphi} \colon ||x||_{\varphi} \leqslant r\}, \quad where \ r > 0$$

are closed in the space (S_0, \mathcal{F}_0) ([8], p. 30).

- § 1. Definitions of linear topologies $\mathscr{T}^{\triangleleft \varphi}$ and $\mathscr{T}^{\lessdot \varphi}$ on Orlicz spaces.
- 1.1. DEFINITION. Let φ be a φ -function. Since $L^{*\varphi} \subset L^{\circ \psi}$ for every $\psi \in \Psi^{\triangleleft \varphi}$, we have two linear projective systems:

(1)
$$j_{\psi} \colon L^{*_{\psi}} \hookrightarrow (L^{\circ \psi}, \mathscr{T}'_{\psi}), \quad \text{where} \quad \psi \in \Psi^{\triangleleft \psi},$$

(2)
$$j_{\boldsymbol{v}} \colon L^{*\varphi} \hookrightarrow (L^{\circ \boldsymbol{v}}, \mathcal{F}'_{\boldsymbol{v}}), \quad \text{where} \quad \boldsymbol{v} \in \mathcal{V}^{\lessdot \varphi},$$

where \mathscr{T}'_{ψ} denotes, for every $\psi \in \mathscr{\Psi}^{\triangleleft \varphi}$ ($\psi \in \mathscr{\Psi}^{\triangleleft \varphi}$), the usual topology \mathscr{T}_{ψ} on $L^{*\psi}$ restricted to $L^{\circ \psi}$.

We shall denote by $\mathcal{F}^{\triangleleft \varphi}$ and $\mathcal{F}^{\triangleleft \varphi}$ the linear topologies of the projective systems (1) and (2).

The topology $\mathcal{T}^{\triangleleft \varphi}$ ($\mathcal{T}^{\lessdot \varphi}$) has a base of neighbourhoods of 0 consisting of all sets

$$\bigcap_{i=1}^k \ j_{\psi_i}^{-1}(U_{\psi_i}),$$

where $\psi_i \in \mathcal{Y}^{\triangleleft \varphi}(\psi_i \in \mathcal{Y}^{\lessdot \varphi})$ and U_{ψ_i} is a neighbourhood of 0 for the topology \mathscr{T}'_{ψ} on $L^{\circ \psi_i}([7])$. Since $j_{\psi_i}^{-1}(U_{\psi_i}) = L^{*\varphi} \cap U_{\psi_i}$ and $U_{\psi_i} = K_{\psi_i}(r_i) \cap L^{\circ \psi_i}$, where $r_i > 0$ and $K_{\psi_i}(r_i) = \{x \in L^{*\psi_i}: ||x||_{\psi_i} < r_i\}$, this base of neighbourhoods of 0 for $\mathscr{T}^{\triangleleft \varphi}(\mathscr{T}^{\lessdot \varphi})$ consists of all sets of the form

$$\bigcap_{i=1}^k K_{\psi_i}(r_i) \cap L^{*\varphi}, \quad \text{ where } \quad \psi_i \in \varPsi^{\lhd \varphi} \ (\psi_i \in \varPsi^{\lessdot \varphi}) \text{ and } r_i > 0 \,.$$

1.2. THEOREM. The topology $\mathscr{T}^{\triangleleft \varphi}(\mathscr{T}^{\lessdot \varphi})$ has a base of neighbourhoods of 0 consisting of all sets of the form

$$K_{\boldsymbol{\psi}}(r) \cap L^{*\boldsymbol{\varphi}}, \quad where \quad \boldsymbol{\psi} \in \boldsymbol{\varPsi}^{\lhd\,\boldsymbol{\varphi}} \ (\boldsymbol{\psi} \in \boldsymbol{\varPsi}^{\lessdot\,\boldsymbol{\varphi}}) \ and \ r > 0 \ .$$

Proof. It suffices to show that, if $\psi_1, \ldots, \psi_k \in \Psi^{\triangleleft \varphi}$ $(\psi_1, \ldots, \psi_k \in \Psi^{\triangleleft \varphi})$ and $r_1, \ldots, r_k > 0$, then there exists $\psi \in \Psi^{\triangleleft \varphi}$ $(\psi \in \Psi^{\triangleleft \varphi})$ and a number r > 0 such that

$$K_{\psi}(r) \subset \bigcap_{i=1}^k K_{\psi_i}(r_i).$$

In fact, let us set $\psi(u) = \max(\psi_1(u), \ldots, \psi_k(u))$ for $u \ge 0$. Then $\psi \in \Psi^{\triangleleft \varphi}(\psi \in \Psi^{\triangleleft \varphi})$. Since $\psi_i(u) \le \psi(u)$ for $u \ge 0$, it follows from 0.2.1 that

$$L^{*_{\psi}} \subset L^{*_{\psi_i}}$$
 and $||x||_{\psi_i} \leqslant ||x||_{\psi}$ for every $x \in L^{*_{\psi}}$.

Hence, for $r = \min(r_1, ..., r_k)$, we have

$$K_{\psi}(r) \subset K_{\psi_i}(r_i)$$
 for $i = 1, \ldots, k$.

1.3. COROLLARY. A sequence (x_n) in $L^{*\varphi}$ is convergent to $x \in L^{*\varphi}$ in the topology $\mathcal{T}^{\triangleleft \varphi}$ $(\mathcal{T}^{\triangleleft \varphi})$ if and only if

$$||x_n - x||_{\psi} \to 0 \quad for \ every \ \psi \in \Psi^{\lhd \varphi} \ (\psi \in \Psi^{\lessdot \varphi}).$$

Now, we shall show that if φ is an N-function, then the topologies $\mathscr{T}^{\triangleleft \varphi}$ and $\mathscr{T}^{\lessdot \varphi}$ are locally convex. The proof is based on the following lemma.

1.4. LEMMA. Let φ be an N-function and ψ a φ -function such that $\psi \leqslant \varphi$ ($\psi \leqslant \varphi$). Then, there exists an N-function ψ_0 such that

$$\psi_0 \leqslant \varphi \ (\psi_0 \triangleleft \varphi) \quad and \quad \psi(u) \leqslant \psi_0(2u) \ for \quad u \ \geqslant 0.$$

Proof. Take an arbitrary N-function ψ_1 such that $\psi_1 \leqslant \varphi$ ($\psi_1 \leqslant \varphi$). Let us set $\psi_2(u) = \max\{\psi(u), \psi_1(u)\}$ for $u \geqslant 0$. We see that ψ_2 satisfies conditions (0_1) and (∞_1) , i.e.

$$\lim_{u\to 0}\frac{\psi_2(u)}{u}=0\quad \text{and}\quad \lim_{u\to \infty}\frac{\psi_2(u)}{u}=\infty.$$

Indeed, we have

$$\lim_{u\to 0} \frac{\psi_2(u)}{u} \leqslant \lim_{u\to 0} \frac{\psi(u) + \psi_1(u)}{u} \leqslant \lim_{u\to 0} \frac{\varphi(u)}{u} + \lim_{u\to 0} \frac{\psi_1(u)}{u} = 0,$$

$$\lim_{u\to \infty} \frac{\psi_2(u)}{u} \geqslant \lim_{u\to \infty} \frac{\psi_1(u)}{u} = \infty.$$

Next, let us put

$$p\left(s
ight) = egin{cases} 0 & ext{for} & s=0, \ \sup_{0 < t \leqslant s} \left(arphi_2(t)/t
ight) & ext{for} & s>0. \end{cases}$$

At last, we define a function ψ_0 by the equality

$$\psi_0(u) = \int_0^u p(s) ds.$$

In virtue of the conditions (0_1) and (∞_1) , the function ψ_0 is an N-function. It is easy to verify that

$$\psi(u)\leqslant \psi_0(2u) \quad {
m for} \quad u\geqslant 0 \quad {
m if} \quad \psi \ll \varphi \ (\psi\triangleleft \varphi)\,.$$

Indeed, since

$$\psi_0(2u) = \int\limits_0^{2u} p(s) ds \geqslant p(u)u,$$

and

$$p(u) = \sup_{0 < t \leqslant u} \frac{\psi_2(t)}{t} \geqslant \sup_{0 < t \leqslant u} \frac{\psi(t)}{t} \geqslant \frac{\psi(u)}{u},$$

we have

$$|\psi_0(2u)\geqslant rac{\psi(u)}{u}\,u\,=\,\psi(u)\quad ext{for}\quad u\geqslant 0\,.$$

Now, we shall show that if $\psi \leqslant \varphi$ and $\psi_1 \leqslant \varphi$ then $\psi_0 \leqslant \varphi$, i.e. for arbitrary c > 0, $\varepsilon > 0$ there exist constants $u_0^1 > 0$ and $u_0^2 > 0$ such that

$$\psi_0(cu) \leqslant \varepsilon \varphi(u)$$
 for $u \leqslant u_0^1$ and $u \geqslant u_0^2$.

Since $\psi_0(cu) \leq p(cu)cu$, it suffices to show that

$$p(cu) \leqslant \varepsilon \varphi(u)/cu$$
 for $u \leqslant u_0^1$ and $u \geqslant u_0^2$.

In fact, since $\psi \leqslant \varphi$, $\psi_1 \leqslant \varphi$, there exist constants $u_1 > 0$ and $u_2 > 0$ such that

$$\psi(u) \leqslant \varepsilon \varphi(u/c), \quad \psi_1(u) \leqslant \varepsilon \varphi(u/c) \quad \text{for} \quad u \leqslant u_1 \text{ and } u \geqslant u_2.$$

But $\psi_2(u) = \max \{ \psi(u), \psi_1(u) \}$, hence there holds

$$\psi_2(u) \leqslant \varepsilon \varphi(u/c) \quad \text{for} \quad u \leqslant u_1 \text{ and } u \geqslant u_2.$$

First, let $u_0^1 = u_1/c$. Since $cu \le cu_0^1 \le u_1$ for $u \le u_0^1$, we obtain

$$p(cu) = \sup_{0 < t \leqslant cu} \frac{\psi_2(t)}{t} \leqslant \sup_{0 < t \leqslant cu} \frac{\varepsilon \varphi(t/c)}{t} = \frac{\varepsilon \varphi(u)}{cu}.$$

Next, let $u_2'>0$ be a number such that $\varepsilon\varphi(u)/cu\geqslant K=\sup_{0< t\leqslant u_2} \left(\psi_2(t)/t\right)$ for $u\geqslant u_2'$. Then, for $u\geqslant u_0^2=\max\ (u_2,u_2')$, we obtain

$$\begin{split} p(cu) &= \sup_{0 < t \leqslant cu} \frac{\psi_2(t)}{t} = \max \left(\sup_{0 < t \leqslant u_2} \frac{\psi_2(t)}{t}, \sup_{u_2 \leqslant t \leqslant cu} \frac{\psi_2(t)}{t} \right) \\ &\leqslant \max \left(K, \sup_{u_2 \leqslant t \leqslant cu} \frac{\varepsilon \varphi(t/c)}{t} \right) = \max \left(K, \frac{\varepsilon \varphi(u)}{cu} \right) = \frac{\varepsilon \varphi(u)}{cu} \,. \end{split}$$

Thus, we obtain $\psi_0 \ll \varphi$.

Finally, we shall show that if $\psi \triangleleft \varphi$ and $\psi_1 \triangleleft \varphi$, then $\psi_0 \triangleleft \varphi$, i.e. for an arbitrary c > 0 there exists a constant d > 0 such that

$$\psi_0(cu) \leqslant d\varphi(u)$$
 for $u \geqslant 0$.

In fact, since $\psi \triangleleft \varphi$ and $\psi_1 \triangleleft \varphi$, it follows that for an arbitrary c > 0 there exists a constant d > 0 such that

$$\psi(u) \leqslant d\varphi(u/c)$$
 and $\psi_1(u) \leqslant d\varphi(u/c)$ for $u \geqslant 0$,

from which it follows that

$$\psi_2(u) \leqslant d\varphi(u/c)$$
 for $u \geqslant 0$.

Therefore

$$p(cu) = \sup_{0 < t \le cu} \frac{\psi_2(t)}{t} \leqslant \sup_{0 < t \le cu} \frac{d\varphi(u/c)}{t} = \frac{d\varphi(u)}{cu};$$

hence $\psi_0(cu) \leqslant p(cu)cu \leqslant d\varphi(u)$ for $u \geqslant 0$. Thus, we obtain $\psi_0 \triangleleft \varphi$.

1.5. THEOREM. If φ is an N-function, then the topologies $\mathscr{T}^{\triangleleft \varphi}$ and $\mathscr{T}^{\lessdot \varphi}$ are locally convex.

Proof. From Theorem 1.2 we know that the system of all sets

$$K_{\boldsymbol{\psi}}(r) \cap L^{*_{\boldsymbol{\varphi}}}, \quad \text{where} \quad \boldsymbol{\psi} \in \boldsymbol{\mathcal{\Psi}}^{\lhd_{\boldsymbol{\varphi}}} \, (\boldsymbol{\psi} \in \boldsymbol{\mathcal{\Psi}}^{\lessdot_{\boldsymbol{\varphi}}}), \, r > 0 \,,$$

constitutes a base of neighbourhoods of 0 for $\mathcal{F}^{\triangleleft \varphi}(\mathcal{F}^{\triangleleft \varphi})$. For an N-function ψ_0 we define

$$K_{\psi_0}^{\circ}(r) = \{x \in L^{*\psi_0} \colon ||x||_{\psi_0}^{\circ} < r\},$$

where $\| \|_{\psi_0}^{\circ}$ is the *B*-norm in $L^{*\psi_0}$ which is equivalent to the *F*-norm $\| \|_{\psi_0}$. We shall prove that the system of all sets

$$K_{\psi_0}^{\circ}(r) \cap L^{*\varphi}, \quad \text{where } \psi_0 \text{ is an N-function, } \psi_0 \triangleleft \varphi \ (\psi_0 \leqslant \varphi), \ r > 0,$$

constitutes a base of neighbourhoods of 0 for $\mathscr{T}^{\triangleleft \varphi}(\mathscr{T}^{\lessdot \varphi})$. Since for an arbitrary N-function ψ_0 the F-norms $\| \|_{\psi_0'}$ and $\| \|_{\psi_0}^{\circ}$ are equivalent in $L^{*\psi_0}$, it suffices to show that for every neighbourhood of 0 for $\mathscr{T}^{\triangleleft \varphi}(\mathscr{T}^{\lessdot \varphi})$ of the form

$$K_{\nu}(r) \cap L^{*\varphi}$$
, where $\psi \in \Psi^{\triangleleft \varphi} (\psi \in \Psi^{\lessdot \varphi}), r > 0$,

there exist an N-function $\psi_0 \in \Psi^{\triangleleft \varphi} (\psi_0 \in \Psi^{\triangleleft \varphi})$ and $r_0 > 0$ such that

$$K_{\psi_0}^{\circ}(r) \cap L^{*\varphi} \subset K_{\psi}(r) \cap L^{*\varphi}.$$

Indeed, let ψ be an arbitrary φ -function such that $\psi \in \Psi^{\triangleleft \varphi}$ ($\psi \in \Psi^{\triangleleft \varphi}$). Let r be an arbitrary positive number. Then, from Lemma 1.4 it follows that we can find an N-function $\psi_0 \in \Psi^{\triangleleft \varphi}$ ($\psi_0 \in \Psi^{\triangleleft \varphi}$) such that

,
$$\psi(u) \leqslant \psi_0(2u)$$
 for $u \geqslant 0$.

Hence

(*)
$$||x||_{\varphi} \leqslant ||2x||_{\varphi_0} \quad \text{for every } x \in L^{*\varphi_0}.$$

On the other hand, since the F-norms $\| \|_{\psi_0}$ and $\| \|_{\psi_0}^{\circ}$ are equivalent in $L^{*\psi_0}$, it follows that there exists $r_1 > 0$ such that

$$(**) K_{\varphi_0}^{\circ}(r_1) \subset K_{\varphi_0}(r).$$

Now, let $r_0 = r_1/2$ and let $x \in K^{\circ}_{\psi_0}(r_0) \cap L^{*\varphi}$.

Then $\|2x\|_{v_0}^{\circ} < r_1$, and using (**) we have $\|2x\|_{v_0} < r$. Hence by (*) we obtain

$$||x||_{\varphi} \leqslant ||2x||_{\varphi_0} < r.$$

Thus $x \in K_{\varphi}(r) \cap L^{*\varphi}$.

- § 2. Comparison of the topologies $\mathscr{T}^{\triangleleft \varphi}$, $\mathscr{T}^{\triangleleft \varphi}$ and \mathscr{T}_{φ} .
- 2.1. Theorem. Let φ be a φ -function. Then

$$\mathscr{T}^{\lessdot \varphi} \subset \mathscr{T}^{\lhd \varphi}$$
.

Proof. It follows from this that $\Psi^{\leqslant \varphi} \subset \Psi^{\lhd \varphi}$.

2.2. Theorem. Let φ be a φ -function. Then

$$\mathscr{T}^{\lhd \varphi} \subset \mathscr{T}_{\varphi}.$$

Proof. Since the system of all sets

$$K_{\psi}(r) \cap L^{*\varphi}$$
, where $\psi \in \mathcal{Y}^{\triangleleft \varphi}$,

constitutes a base of neighbourhoods of 0 for $\mathcal{T}^{\triangleleft \varphi}$, it suffices to show that for every $\psi \in \mathcal{Y}^{\triangleleft \varphi}$ and r > 0 there exists $r_1 > 0$ such that

$$K_{\omega}(r_1) \subset K_{\omega}(r)$$
.

Indeed, let ψ be an arbitrary φ -function such that $\psi \in \Psi^{\triangleleft \varphi}$. Let r be an arbitrary positive number. Then there exists a constant d > 1 such that

$$\psi\left(\frac{2u}{r}\right) \leqslant d\varphi(u)$$
 for $u \geqslant 0$.

Let $r_1 = \min(2u/r, 1)$. Then $||x||_{\varphi} < r_1$ implies $||x||_{\psi} < r$. Indeed, if $||x||_{\varphi} < r_1 \le 1$, then $\varrho_{\varphi}(x) < r/2d$, and hence

$$arrho_{\psi}\Big(rac{2}{r}|x\Big)=\int\limits_{E}\psi\Big(rac{2}{r}|x(t)|\Big)dt\leqslant d\int\limits_{E}arphi\Big(|x(t)|\Big)dt=darrho_{arphi}(x)<rac{r}{2}.$$

Hence $||x||_{v} \leqslant r/2 < r$.

From Theorems 2.1 and 2.2 we have

$$\mathscr{T}^{\lessdot \varphi} \subset \mathscr{T}^{\triangleleft \varphi} \subset \mathscr{T}_{\varphi}.$$

2.3. Theorem. Suppose that a φ -function φ satisfies the Δ_2 -condition. Then

$$\mathscr{T}^{\triangleleft \varphi} = \mathscr{T}_{\varphi}.$$

Proof. It suffices to notice that if φ satisfies the Δ_2 -condition, then $\varphi \in \Psi^{\triangleleft \varphi}$.

Now we shall show that if φ does not satisfy the Δ_2 -condition, then $\mathscr{F}^{\triangleleft \varphi}$ is strictly weaker than \mathscr{F}_{φ} . Namely, we have the following theorem.

2.4. THEOREM. Suppose that a φ -function φ does not satisfy the Δ_2 -condition. Then there exists a sequence (x_n) in $L^{*\varphi}$ such that

$$x_n \xrightarrow{\mathcal{F}^{\triangleleft \varphi}} 0$$
 and $\varrho_{\varphi}(x_n) > 1$ for every integer $n > 0$.

Proof. Since φ does not satisfy the Δ_2 -condition, it follows that for an integer n>0 there exists a number $u_n>0$ such that

$$\varphi(2u_n) > n\varphi(u_n).$$

Let (E_n) be a sequence of measurable sets in E such that

$$|E_n| = \frac{1}{n\varphi(u_n)},$$

and let us put

$$x_n(t) = \begin{cases} 2u_n & \text{for } t \in E_n, \\ 0 & \text{for } t \notin E_n. \end{cases}$$

Then $||x_n||_{\varphi} \to 0$ for every $\psi \in \mathcal{Y}^{\triangleleft \varphi}$, i.e. $x_n \xrightarrow{\mathscr{F}^{\triangleleft \varphi}} 0$.

Indeed, let ψ be an arbitrary φ -function such that $\psi \in \Psi^{\triangleleft \varphi}$. Let ε be an arbitrary positive number. Then there exists a constant d>0 such that

$$\psi\left(\frac{2u}{\varepsilon}\right) \leqslant d\varphi(u) \quad \text{for} \quad u \geqslant 0.$$

Let N be a natural number such that $N \geqslant d/\varepsilon$. Hence, for $n \geqslant N$ we obtain

$$\varrho_{\psi}\left(\frac{x_n}{\varepsilon}\right) = \psi\left(\frac{2u_n}{\varepsilon}\right) \cdot \frac{1}{n\varphi(u_n)} \leqslant \frac{d}{n} \leqslant \varepsilon,$$

so we have $||x_n||_{\psi} \leq \varepsilon$. On the other hand, by (*) we obtain

$$\varrho_{\varphi}(x_n) = \frac{\varphi(2u_n)}{n\varphi(u_n)} > 1$$
 for every positive integer n;

hence $||x_n||_{\varphi} \to 0$.

The topology $\mathscr{T}^{\leqslant \varphi}$ is always strictly weaker than the topology \mathscr{T}_{φ} . 2.5. Theorem. Let φ be a φ -function. Then there exists a sequence (x_n) in $L^{*\varphi}$ such that

$$x_n \xrightarrow{\mathscr{F} \lessdot \varphi} 0$$
 and $\varrho_{\varphi}(x_n) = 1$.

Proof. Let (u_n) be an arbitrary sequence of positive numbers such that $u_n \to \infty$. Then, let (E_n) be a sequence of measurable sets in E such that

$$|E_n| = 1/\varphi(u_n).$$

Define

$$x_n(t) = \begin{cases} u_n & \text{for } t \in E_n, \\ 0 & \text{for } t \notin E_n. \end{cases}$$

Then

$$||x_n||_{\psi} \to 0$$
 for every $\psi \in \Psi^{\ll \varphi}$, i.e. $x_n \xrightarrow{\mathscr{F}^{\ll \varphi}} 0$.

In fact, let ψ be an arbitrary φ -function such that $\psi \in \Psi^{\ll \varphi}$. Let ε be an arbitrary positive number. Then there exists a number $u_0 > 0$ such that

$$\psi(u/\varepsilon) \leqslant \varepsilon \varphi(u)$$
 for $u \geqslant u_0$.

Let N be a natural number such that $u_n \geqslant u_0$ for $n \geqslant N$. Then

$$\varrho_{\psi}(x_n/\varepsilon) = \psi(u_n/\varepsilon) \cdot \frac{1}{\varphi(u_n)} \leqslant \varepsilon \quad \text{for} \quad n \geqslant N;$$

hence $||x_n||_{\psi} \to 0$. Thus, we obtain $x_n \xrightarrow{\mathscr{T}^{\leqslant \varphi}} 0$.

On the other hand, $\varrho_{\varphi}(x_n) = \varphi(u_n)/\varphi(u_n) = 1$; hence $x_n \xrightarrow{\mathscr{F}_{\varphi}} 0$.

- § 3. Comparison of convergence of sequences (x_n) in $L^{*\varphi}$ in the topologies $\mathscr{T}^{\lhd\varphi}$ and $\mathscr{T}^{\lessdot\varphi}$ with the φ -modular convergence.
- 3.1. LEMMA. Let φ and ψ be φ -functions such that $\psi \triangleleft \varphi$. Then $x_n \stackrel{\varphi}{\to} 0$ implies $||x_n||_{\psi} \to 0$ for a sequence (x_n) in $L^{*\varphi}$.

Proof. Let λ_0 be a positive number such that $\varrho_{\varphi}(\lambda_0 x_n) \to 0$. Since $\psi \triangleleft \varphi$, for an arbitrary number $\varepsilon > 0$, there exists a constant d > 0 such that

$$\psi(u/\varepsilon) \leqslant d\varphi(\lambda_0 u) \quad \text{for} \quad u \geqslant 0.$$

We have

$$\int_{E} \varphi(\lambda_{0}|x_{n}(t)|) dt \rightarrow 0;$$

hence there exists a natural number N such that

$$\int\limits_E \varphi\left(\lambda_0|x_n(t)|\right)dt\leqslant \varepsilon/d\quad \text{for}\quad n\geqslant N\,.$$

From (*) and (**) it follows that

$$\int\limits_{E} \psi \left(\frac{|x_n(t)|}{\varepsilon} \right) dt \leqslant d \int\limits_{E} \varphi \left(\lambda_0 |x_n(t)| \right) dt \leqslant d \frac{\varepsilon}{d} = \varepsilon \quad \text{for} \quad n \geqslant N;$$

hence $||x_n||_v \leqslant \varepsilon$ for $n \geqslant N$.

This lemma implies the following theorem.

- 3.2. THEOREM. Let φ be a φ -function. Then $x_n \xrightarrow{\varphi} 0$ implies $x_n \xrightarrow{\mathcal{F}^{\triangleleft \varphi}} 0$ for a sequence (x_n) in $L^{*\varphi}$.
- 3.3. COROLLARY. Suppose that φ satisfies the Δ_2 -condition. Then $x_n \stackrel{\varphi}{\longrightarrow} 0$ if and only if $x_n \stackrel{\mathscr{F}^{\triangleleft \varphi}}{\longrightarrow} 0$ for any sequence (x_n) in $L^{*\varphi}$.

Proof. It suffices to remark that if φ satisfies the Δ_2 -condition, then by Theorem 2.3 we have that $\mathscr{F}_{\varphi} = \mathscr{F}^{\triangleleft \varphi}$.

3.4. THEOREM. Suppose that a φ -function φ does not satisfy the V_2 -condition for large values of u. Then there exists a sequence (x_n) in $L^{*\varphi}$ such that

$$x_n \xrightarrow{\mathscr{I} \lessdot \varphi} 0 \quad and \quad x_n \xrightarrow{\varphi} 0.$$

Proof. Since φ does not satisfy the V_2 -condition (0.1.3.e) for large values u, it follows that for every positive integer n there exists a real number u_n with $u_n \ge n$ such that

$$(*) 2\varphi(u_n) > \varphi(nu_n).$$

Let (E_n) be a sequence of measurable sets in E such that

$$|E_n| = 1/\varphi(nu_n),$$

and let us put

$$x_n(t) = \begin{cases} nu_n & \text{for } t \in E_n, \\ 0 & \text{for } t \notin E_n. \end{cases}$$

First, we shall show that $x_n \xrightarrow{\mathscr{I}^{\ll \varphi}} 0$. Indeed, let ψ be an arbitrary φ -function such that $\psi \in \mathscr{Y}^{\ll \varphi}$. Let ε be an arbitrary positive number. Then there exists a number $u_0 > 0$ such that

$$\psi\left(\frac{u}{\varepsilon}\right) \leqslant \varepsilon \varphi(u) \quad \text{for} \quad u \geqslant u_0.$$

Let N be a natural number such that $nu_n \geqslant u_0$ for $n \geqslant N$. Then

$$arrho_{arphi}\left(rac{x_{n}}{arepsilon}
ight)=\psi^{'}\!\!\left(rac{nu_{n}}{arepsilon}
ight)\!\!-\!\!rac{1}{arphi(nu_{n})}\leqslantarepsilon\quad n\geqslant N;$$

hence $||x_n||_{\varphi} \leqslant \varepsilon$ for $n \geqslant N$. Thus, we obtain $x_n \xrightarrow{\mathscr{F}^{\ll \varphi}} 0$. On the other hand, for any real number $\lambda_0 > 0$, there holds by (*)

$$arrho_{arphi}(\lambda_0 x_n) \geqslant arrho_{arphi}igg(rac{x_n}{n}igg) = rac{arphi\left(u_n
ight)}{arphi\left(nu_n
ight)} > rac{1}{2} \quad ext{for every integer } n \geqslant rac{1}{\lambda_0}.$$

Thus $x_n \xrightarrow{\varphi} 0$.

^{6 -} Roczniki PTM - Prace Matematyczne t. XXIII

- § 4. The separability of the spaces $(L^{*\varphi}, \mathscr{T}^{\lessdot\varphi})$ and $(L^{*\varphi}, \mathscr{T}^{\lhd\varphi})$. We shall prove that the space $(L^{*\varphi}, \mathscr{T}^{\lhd\varphi})$ is separable. Then, since $\mathscr{T}^{\lessdot\varphi} \subset \mathscr{T}^{\lhd\varphi}$, the space $(L^{*\varphi}, \mathscr{T}^{\lessdot\varphi})$ also will be separable.
- 4.1. Lemma. Let $E = \mathbf{R}^k$ and let φ be a φ -function. Let $B_0 \subset L^{*\varphi}$ be the set of all measurable, bounded functions vanishing outside intervals $A_n = (-n, n) \times \ldots \times (-n, n)$ for some n > 0. Then the set B_0 is dense in $L^{*\varphi}$ in

the sense of φ -modular convergence.

Proof. We must show that, if $x \in L^{*\varphi}$, then there exists a sequence (x_n) in B_0 such that $x_n \stackrel{\varphi}{\to} x$. Let $x \in L^{*\varphi}$. Then $\varrho_{\varphi}(\lambda_0 x) < \infty$ for some $\lambda_0 > 0$. Let us put

$$x_n(t) = egin{cases} x(t) & ext{for} & |x(t)| \leqslant n ext{ and } t \in A_n, \ 0 & ext{for} & |x(t)| > n ext{ or } t \notin A_n. \end{cases}$$

Then $x_n \in B_0$ and $\int_{\mathbb{R}} \varphi(\lambda_0|x(t) - x_n(t)|) dt \rightarrow 0$.

In fact, we have

$$\varphi\left(\lambda_0|x(t)-x_n(t)|\right)\leqslant \varphi\left(\lambda_0|x(t)|\right),$$

and

$$\varphi(\lambda_0|x(t)-x_n(t)|) \rightarrow 0$$
 almost everywhere.

Hence, by Lebesgue's bounded convergence theorem ([1], p. 110) we have

$$\int\limits_{E} \varphi\left(\lambda_{0}|x(t)-x_{n}(t)|\right)dt \to 0.$$

4.2. Corollary. The set B_0 is dense in $(L^{*\varphi}, \mathscr{F}^{\triangleleft \varphi})$.

Proof. This follows from Theorem 3.2.

4.3. Theorem. The space $(L^{*\varphi}, \mathscr{T}^{\triangleleft \varphi})$ is separable.

Proof. Let W_0 be the set of polynomials with rational coefficients, vanishing outside intervals $A_n = \underbrace{(-n,n) \times \ldots \times (-n,n)}_{k \text{ times}}$ for some n > 0.

It is well known that W_0 is dense in $L^{\circ \varphi}$ in the topology $\mathscr{T}_{\varphi}([3])$. Since $\mathscr{T}^{\triangleleft \varphi} \subset \mathscr{T}_{\varphi}$, it follows that W_0 is dense in $L^{\circ \varphi}$ in the topology $\mathscr{T}^{\triangleleft \varphi}$, i.e. $\overline{W}_0 \supset L^{\circ \varphi}$, where a closure is taken in $\mathscr{T}^{\triangleleft \varphi}$. Then, by the Corollary 4.2, we obtain $\overline{W}_0 = (\overline{\widehat{W}_0}) \supset \overline{L}^{\circ \varphi} \supset \overline{B}_0 = L^{*\varphi}$, where closures are taken in $\mathscr{T}^{\triangleleft \varphi}$.

- §5. The completeness of the spaces $(L^{*\varphi}, \mathscr{T}^{\triangleleft_{\varphi}})$ and $(L^{*\varphi}, \mathscr{T}^{\lessdot_{\varphi}})$.
- 5.1. Theorem. The spaces $(L^{*\varphi}, \mathscr{F}^{\triangleleft \varphi})$ and $(L^{*\varphi}, \mathscr{F}^{\lessdot \varphi})$ are complete.

Proof. Let $\{x_{\sigma} \colon \sigma \in \Sigma\}$ be any Cauchy M-S sequence in $L^{*_{\varphi}}$ in the topology $\mathscr{T}^{\triangleleft_{\varphi}}(\mathscr{T}^{\lessdot_{\varphi}})$, i.e. for every $\psi \in \mathscr{\Psi}^{\triangleleft_{\varphi}}(\psi \in \mathscr{\Psi}^{\lessdot_{\varphi}})$ and every number r

with 0 < r < 1 there exists $\sigma_0 \in \Sigma$ such that

(1)
$$||x_{\sigma} - x_{\sigma'}||_{w} < r \quad \text{for} \quad \sigma, \ \sigma' \geqslant \sigma_{0};$$

hence

(2)
$$\varrho_{w}(x_{\sigma} - x_{\sigma'}) < r \quad \text{for} \quad \sigma, \ \sigma' \geqslant \sigma_{0}.$$

We shall show that

$$x_{\sigma} \xrightarrow{\mathcal{T}^{\triangleleft \varphi}} x \quad (x_{\sigma} \xrightarrow{\mathcal{T}^{\triangleleft \varphi}} x) \quad \text{for some } x \in L^{*_{\varphi}}.$$

Define

$$A_{\sigma,\sigma'}(\varepsilon) = \{t \in E \colon |x_{\sigma}(t) - x_{\sigma'}(t)| \geqslant \varepsilon\}$$
 for an arbitrary $\varepsilon > 0$.

Let ψ be an arbitrary φ -function such that $\psi \in \mathcal{Y}^{\triangleleft \varphi}$ ($\psi \in \mathcal{Y}^{\triangleleft \varphi}$), and let ε be an arbitrary positive number. Let $r = \varepsilon \psi(\varepsilon)$. Then from (2) it follows that

$$\begin{split} |A_{\sigma,\sigma'}(\varepsilon)|\psi(\varepsilon) &= \int\limits_{A_{\sigma,\sigma'}(\varepsilon)} \psi(\varepsilon) \, dt \leqslant \int\limits_{A_{\sigma,\sigma'}(\varepsilon)} \psi \left(|x_{\sigma}(t) - x_{\sigma'}(t)|\right) dt \\ &\leqslant \int\limits_{\varepsilon} \psi \left(|x_{\sigma}(t) - x_{\sigma'}(t)|\right) dt < r = \varepsilon \psi(\varepsilon) \quad \text{for} \quad \sigma, \, \sigma' \geqslant \sigma_0; \end{split}$$

hence we have

$$|A_{\sigma,\sigma'}(arepsilon)|\leqslant arepsilon \quad \sigma,\,\sigma'\geqslant \sigma_0\,.$$

It means that this Cauchy M-S sequence $\{x_{\sigma} \colon \sigma \in \Sigma\}$ satisfies the Cauchy condition in measure. Since by 0.4.2 the space (S_0, \mathcal{F}_0) is complete, it follows that there exists a function $x \in S_0$ such that $x_{\sigma} \xrightarrow{\mathcal{F}_0} x$. Hence

$$(x_{\sigma'}-x_{\sigma})\frac{\mathcal{I}_0}{\sigma'} > (x-x_{\sigma}).$$

Now, we shall prove that $x_{\sigma} \xrightarrow{\mathscr{I} \lhd \varphi} x$ $(x_{\sigma} \xrightarrow{\mathscr{I} \lhd \varphi} x)$, i.e. $\|x_{\sigma} - x\|_{\varphi} \to 0$ for every $\varphi \in \mathscr{Y}^{\lhd \varphi}$ $(\psi \in \mathscr{Y}^{\lhd \varphi})$.

Indeed, let ψ be an arbitrary φ -function such that $\psi \in \mathcal{\Psi}^{\triangleleft \varphi}$ ($\psi \in \mathcal{\Psi}^{\triangleleft \varphi}$). Let r be an arbitrary number with 0 < r < 1. Then from (1) there exists $\sigma_0 \in \Sigma$ such that

(4)
$$x_{\sigma'} - x_{\sigma} \in \overline{K}_{\psi}(r) \quad \text{for} \quad \sigma, \ \sigma' \geqslant \sigma_0.$$

The balls $\overline{K}_{\psi}(r)$ are by 0.4.3 closed in (S_0, \mathcal{F}_0) . Therefore from (3) and (4) it follows that

(5)
$$x - x_{\sigma} \in \overline{K}_{n}(r) \quad \text{for} \quad \sigma \geqslant \sigma_{0}.$$

Hence $\|x_{\sigma} - x\|_{\varphi \to 0} \to 0$. Thus, we proved that $x_{\sigma} \xrightarrow{g \to q} x$ $(x_{\sigma} \xrightarrow{g \to q} x)$.

For the completeness of the spaces $(L^{*\varphi}, \mathcal{F}^{\triangleleft \varphi})$ and $(L^{*\varphi}, \mathcal{F}^{\triangleleft \varphi})$ it suffices to show that $x \in L^{*\varphi}$. Since by 0.3 we have the equalities $L^{*\varphi} = \bigcap_{x \in \mathcal{F}} L^{\circ \varphi}$

 $= \bigcap_{\varphi \in \Psi^{\triangleleft \varphi}} L^{\circ \varphi}, \text{ we shall show that for every } \psi \in \Psi^{\triangleleft \varphi} \text{ there holds } \varrho_{\psi}(\lambda x) < \infty$ for all $\lambda > 0$. In fact, let ψ be an arbitrary φ -function such that $\psi \in \Psi^{\triangleleft \varphi}$. Then, from (5) it follows that for any number $\lambda > 0$ there exists $\sigma_0 \in \Sigma$ such that $\|x_{\sigma_0} - x\|_{\psi} \leq 1/2\lambda$; hence

(6)
$$\varrho_{\psi}(2\lambda(x_{\sigma_0}-x)) \leqslant 1/2\lambda.$$

On the other hand, since $x_{\sigma_n} \in L^{*\varphi}$, we have

$$\varrho_{\psi}(2\lambda x_{\sigma_0}) < \infty.$$

Finally, from (6) and (7) it follows that

$$\varrho_{_{\boldsymbol{\mathcal{V}}}}(\lambda\boldsymbol{x}) \; = \; \varrho_{_{\boldsymbol{\mathcal{V}}}}\!\left(\tfrac{1}{2}(2\lambda\boldsymbol{x}_{\sigma_0}) + \tfrac{1}{2}\!\left(2\lambda(\boldsymbol{x}-\boldsymbol{x}_{\sigma_0})\right)\right) \leqslant \varrho_{_{\boldsymbol{\mathcal{V}}}}(2\lambda\boldsymbol{x}_{\sigma_0}) + \varrho_{_{\boldsymbol{\mathcal{V}}}}\!\left(2\lambda(\boldsymbol{x}_{\sigma_0}-\boldsymbol{x})\right) < \; \infty \, .$$

I would like to express my thanks to Doc. R. Leśniewicz for his help while working on this paper.

References

- [1] P. Halmos, Measure theory, Springer-Verlag, New York 1974.
- [2] M. A. Krasnosel'skii and Ya. B. Rutickii, Convex functions and Orlicz spaces, Groningen 1961.
- [3] W. Matuszewska, On generalized Orlicz spaces, Bull. Acad. Polon. Sci. 8 (1960), 349-353.
- [4] J. Musielak, W. Orlicz, Some remarks on modular spaces, ibidem 7 (1959), 661-668.
- [5] M. Nowak, On two equalities for Orlicz spaces. I, Funct. et Approx. 10 (1980), 69-81.
- [6] R. O'Neil, Integral transforms and tensor products on Orlicz spaces and L(p, q) spaces, J. Anal. Math. 21 (1968), 4-276.
- [7] H. Schaefer, Topological vector spaces, New York-London 1967.
- [8] Ph. Turpin, Convexités dans les espaces vectoriels topologiques généraux, Dissert, Math. 131 (1976).

INSTITUTE OF MATHEMATICS, A. MICKIEWICZ UNIVERSITY, Poznań INSTYTUT MATEMATYCZNY, UNIWERSYTET im. A. MICKIEWICZA, Poznań