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On two linear topologies on Orlicz spaces L*.

Abstract. In this paper we consider two linear topologies on Orliez spaces I}7,
where ¢ is a @-function and E is a finite-dimensional Euclidean space with the usual
Lebesgue measure. We denote these topologies by &% and 7<%, In § 1 we prove that
if g is an N-function, then these topologies are locally convex. In §2 wo compare the
topologies 7 1% and 7<% with the topology generated by the F-norm ||-[|, in L}f, and
in § 3 compare the p-modular convergence of sequences () in L% with convergence
in the topologies J<® and 7 <¢. Finally, in §4 and §5 we prove that the spncoa
(L%7, 7<99) and (L3, 3"«") are separable and complete.

In the case where ¢ is the Orliez function which satisfies the Adj-condition
and I is a finite non-atomic measure space, then the topology <% was considered
by Ph. Turpin ([8], Chapter I, Theorem 1.2.2).

§ 0. Introduction.

0.1. ¢-functions.

0.1.1. It is said that a function ¢: [0, co)~[0, co) is a @-function if it is
continuous, non-decreasing and such that ¢(0) =0, ¢(u) >0 for v >0
and ¢(u)— co for 4->oo.

0.1.2, A g-function ¢ is called an N-function if it admits the represen-
tation

p(u) = [pt)dl

where p () is right-continuous for ¢ > 0, p(0) = 0, p(t) > 0 for ¢ > 0, non-
decreasing and p(t)—>oco for t—>oco ([2], p. 6). :

It is sometimes useful to use the following definition of an N-function:
A g-function g is called an N-function if ¢is convex and satisfies the con-
ditions

(0,) 1im 2% o,
us0 U
{00,) l.imf—gb—)= o ([2], p- 9)- | -

U—>0C



72 - M. Nowak

0.1.3. Let ¢ and y be ¢-functions.
(a) It is wrote y < p if there exist constants a > 0 and b > 0 such
that ‘

p(u) < ap{bu) for u>=0.

(b) - We shall say that a ¢-function ¢ increases essentially more rapidly
than @ g-function v and shall write v € ¢ if, for an arbitrary ¢ > 0,
p(cw)

im P _ o and lim P

=0 ([2], . 144; [5]).
=) tm (12}, » (51

(¢) We shall write <] ¢ if, for an arbitrary ¢ > 0, there exists
a constant d > 0 such that

plcw) < dp(u) for u =0.

It is easy to check that if y <€ ¢, then y<J ¢ ([5]).
(d) It is said that ¢ satisfies the A,-condition if there exists a constant
d > 1 such that
p(2u) < dp(w) for uw>=0 - ([2], p. 23).

(e) It is said that ¢ satisfies the V,-condition for large (small) values of
u if there exist constants d > 1 and u, > 0 such that

20(u) < @p(du) for u=u, (u<<u.
0.2. Orlicz spaces.
0.2.1. Let E be a finite-dimensional Euclidean space with the usual

i . - -
Lebesgue measure. For a ¢-function ¢ and a real valued function x defined
and measurable on E we write

0p(@) = [o(le(t)))dt.
E

-

By L* we denote the linear space of those functions » for which 0,(Az) < oo
for some 2 > 0, and by .L° the linear space of those functions » for which
0, (A1) < oo for all A > 0 ([3]). It is well known that if y < ¢, then L™
c L™ ([8]). Tt is easy to verify that if <] ¢, then L*® < L% ([5], proof of
Theorem 1).

0.2.2. Let ¢ be a p-function. A sequence (,) in L* is called g-modular
convergent to x € L*® and is denoted by

@
Xy—> @
if there exists-a comstant 4, > 0 such that g, (i (z, —))—0 ([3]).

0.2.3. In L** we may define an F-norm:

]y = Inf {2 > 0: g, (w/1) < A}.
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The space L*? is complete with respect to the F-norm | ||,. Moreover, if
@ is an N-function, then in L*® we may define also a B-norm:

llly, = inf{A > 0: g (2/2) < 1};

this norm is equivalent to the F-norm | i, ([4]).

Throughout the paper we shall denote by 7, the topology on L*®
generated by the F-norm | f,.

0.2.4. THEOREM. Let (x,) be a sequence in L*®. Then

(a) |w,ll,—~0 implies z,> 0,

(b) &, %> 0 implies i@, ll,—>0 if and only if p satisfies the Ay-condition ([3]).

0.3. Some equalities for Orlicz spaces. Let ¢ be a ¢-function. Denote
by P97 (¥<?) the set of all p-functions y such that v <] ¢ (v < ¢). It is shown
in [5], Theorem 2, that
(1) L* = M L.

ye plP
In the case where ¢ is an Orlicz function which satisfies the 4,-condition
and ¥ is a finite non-atomic measure space, then the above equality was
obtained by Ph. Turpin ([8], Chapter I, Theorem 1.2.2). Since L*? = L°¥
for each v e PI¢ and ¥<? < P97, it follows from equality (1) that

(2) L* = ) L°*.

we lI’<]‘P

0.4. Topology of convergence in measure.

0.4.1. Let 8 be the linear space of real-valued functions defined and
measurable on F. Then in § a pseudo-modular may be defined as follows:

0y (@) = |{t e E: |(t)] > 1}].

Let S, be the subspace of 8§ consisting of all functions which are almost
everywhere finite valued. Then in S, an F-norm || |, may be defined as
follows:

loll, = inffe > 0: |{t € B: [a(t)] > &}| < ¢}

Throughout this paper we shall denote by 77, the topology on S, generated
by the F-norm || |j,.

It is seen that a sequence (x,) in 8§, is convergent to z € S, in the top-
ology 7, if and only if a sequence (,) is convergent to # in measure. More-
over, for every g-function ¢ we have that L* < §, and that the topology
T 4 i8 strictly finer than the topology 7, restricted to L*? ([8], p. 30).

0.4.2. THEOREM. The space (S, T,) is complete ([8], p. 30). .
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0.4.3. THEOREM. Lef @ be a ¢-function. Then the balls
K (r) = {8 e L': |w), <7}, where r>0
are closed in the space (S; 7,) ([8], p- 30).

§ 1. Definitions of linear topologies 79¢ and 7 < on Orlicz spaces.

1.1. DEFINITION. Let ¢ be a g¢-function. Since L*? < L°¥ for every
v e ¥ we have two linear projective systems:

(1) jo: L** = (L*¥, 7,), where yeW¥?,
(2) jp: L*P=> (L%, 7,), where ye¥<?,

where 7, denotes, for every y e ¥? (y e ¥<?), the usual topology 77, on L*?

restrlcted to L°Y.
We shall denote by 797 and 7 <% the linear topologies of the projective

systems (1) and (2).
The topology 7<% (7 <%) has a base of neighbourhoods of 0 consisting

of all sets
k

'_|1 j;il( Ulp,,:)’

where y, € ¥¢(y, € ![K"’) and U, is a neighbourhood of 0 for the topology
T, on L°¥i ([T]). Slnce] YU ve) = ' L*n U, and U, = K, (r;)nL°%, where
7 >0 and K, {m e L*i: llll,, <n}, this base of neighbourhoods
of 0 for 7 (.9' <")) consists of all sets of the form

ﬂ K, )AL,  where vy e ?I’Q"’ (y; e P<%)and r; > 0.
1.2. THEOREM. The topology 9% (7 <%) has a base of neighbourhoods
of 0 consisting of all sets of the form
K, (r)nL*, where eV (ye¥P**)andr>0.
Proof. It suffices to show that, if v, ..., v, € ¥I9 (,, ..., v, € ¥<9)

and #y, ..., ¥, > 0, then there exists y € P? (p € ¥<?) and a number r > 0
such that
k
c ﬂ K
=1

In fact, let us set y(u) = max(wl(u), ceey zp,((u)) for v >0. Then v e ¥<°(y
e ¥<?). Since y,;(u) < p(u) for w > 0, it follows from 0.2.1 that

L' < L™ and o, < |z, for every zeL™.

Hence, for » = min(ry, ..., 7;), we have
K, (r)c K, (r;) for i=1,..,k.
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1.3. COROLLARY. A sequence (x,) in L*? is comvergent to x e L' in
the topology T (7<%) if and only if

e, — 2|, —~0  for every p e ¥I? (ype P<?),
Now, we shall show that if ¢ is an N-function, then the topologies
9% and 7 <° are locally convex. The proof is based on the following lemma.

1.4. LeMMA. Let ¢ be an N-function and v a @-function such that
v < @ (p]o). Then, there exists an N-function v, such that

P L@ (yolg) and yp(u) <y (20) for u >0.

Proof. Take an arbitrary N-function v, such that 1/)1 <o (<o)
Let us set p,(u) = max(y)(u), wl(u)) for v = 0. We see that vy, satisfies
conditions (0,) and (oo,), i.e.

P2 () (w)

“ . 2
lim——— =0 and hmlp___. = 00
U0 U . U—00 U

Indeed, we have

lim Y2 <lim w(u)+w1(u)‘ <1lim @ (w) + lim v(w) _ 0,
us0 U U0 u us0 U us0 U
tim 22 S g 2
usco U u-sco U
Next, let us put _
0 ‘ for s =20,
p(s) =

sup (po(t)/t) for s>0.

0<i<s

At last, we define a function y, by the equality

wo(u) = [ p(s)ds.

In .virtue of the conditions (0;) and ( o0,), the function y, is an N-funetion.
It is easy to verify that

pu) <y (2u) for w=0 if y» <Lg (p]9).

Indeed, since

2u

v (2u) = [ p(s)ds > p(uw)u,
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and
A 1
p(w) — sup pa(?) > sup y(t) > w(u)’
o<i<u o<i<u t w
we have
N
o (2u) > td )u =y(u) for u>=0.

w

Now, we shall show that if y <€ ¢ and ¢, < ¢ then y, < ¢, i.e. for arbitrary
¢> 0, ¢ > 0 there exist constants u; > 0 and %} > 0 such that

wolou) < ep(u) for w << uland u > ul.
Since y,(cu) < p(eu)cu, it suffices to show that
plew) < ep(u)few for u < uland u>ul.

In‘fact, since yp < ¢, v; < ¢, there exist constants #, >0 and u, > 0
such that '

p(u) < ep(ufe), y(u)<ep(ufe) for w<u;andu>u,.
But y,(u) = max (1/:(u), zpl(u)), hence there holds
po(u) < ep(uje) for w<<u,andu > u,.
First, let ug = uyfe. Since cu < cuy < u, for u < 4y, we obtain

pleu) = sup 2 () < sup ep(t/c) _ e (w) .

o<t<cu o<i<eu t cY

Next, let u, > 0 be a number such that ep(u)/ou > K = sup (y,(t)/t) for

0<t<’U2
% > uy. Then, for u > 4} = max (u, %,), We obtain

t t 14
p(cu) = sup va(1) = ma,x( sup 22—(——), sup el ))
o<t<cu 0<t<u, up<t<en ¥
t/e
< max (K, sup sl )) = max(K, s(p(u)) = ep () .
uzstgcu cYu

Thus, we obtain y, < .
Finally, we shall show that if <] ¢ and v, <|¢, then y,<] ¢, i.e. for an
arbifrary ¢ > 0 there exists a-.constant d > ¢ such that

yoleu) < dp(u) for w>0.

In fact, since p<]¢ and y,<lg, it follows that for an arbitrary ¢ > 0 there
exists a constant d > 0 such that

A}

p(u) < dp(uje) and v, (w) < dg(ufo) for w>0,
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from which it follows that

wo(w) < dp(uje) for u>0.
Therefore
pa(?) dp(uje)  dp(u)
— ?

p(cu) = sup < sup
o<i<<cu t - 0<f<eu t U

hence y,(cu) < p(cu)eu < dp(u) for w = 0. Thus, we obtain y, < ¢.

1.5. THEOREM. If ¢ is an N-function, then the topologies T3¢ and T <¢
are locally convex.

Proof. From Theorem 1.2 we know that the system of all sets
K, (r)nL", where ye ¥ (ye¥<®),r>0,

constitutes a base of neighbourhoods of 0 for 79%(7 <?). For an N-function
¥, we define -

Ky (r) =f{we L*¥: Illy, < 7}

where | [ is the B-norm in L*¥ which is equivalent to the F-norm || lly,-
We shall prove that the system of all sets

K;O(r)ml}*"’, where y, is an N-function, y,<l¢ (p,< @), r >0,

constitutes,a base of neighbourhoods of 0 for 79?(7<%). Since for an arbit-
rary N-function y, the F-norws | [, and || ; are equivalent in L*%, it suf-
fices to show that for every neighbourhood of 0 for 79?(7<?) of the form

K,(r)nL*, where ue ¥ (pe¥<),r>0,
there exist an N-function v, € ¥I° (y, € ¥<7) and 7, > 0 such that
K;o(r)nL*? < K, (r)aL*.

Indeed, let p be an arbitrary ¢-function such that y € P% (y e ¥<).
Let r be an arbitrary positive number. Then, from Lemma 1.4 it follows
that we can find an N-function vy, e ¥° (y, € ¥<*) such that

p(u) <y (2u) for u>0.

Hence

(%) I, < li22], ~for everywe L',

On the other hand, since the F-norms | fl, and/H fly , Are equivalent in L*¥o,
it follows that there exists 7, > 0 such that

() Ky (ry) < K, (7).

Now, let 7, = r,/2 and let » eK;’,O(rO)nL*".
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Then [2z];, < ri, and using (+*) we have |2z, < r. Hence by () we obtain
llll, < 112l <.
Thus » € K, (r)aL*.

§ 2. Comparison of the topologies 7<%, 7<¢ and 7.
21. THEOREM. Let ¢ be a ¢-function. Then

T < g9,
Proof. It follows from this that P<? < ¥e,
2.2. THEOREM. Let ¢ be a ¢-function. Then
T®eT,.
Proof. Since the system of all sets
K,(r)nL*, where ye¥?,

constitutes a base of neighbourhoods of 0 for 797, it suffices to show
that for every v e ¢ and r > 0 there exists r, > 0 such that

K,(r,) =« K,(r).

Indeed, let y be an arbitrary g-function such that ¢ € ¥<%. Let r be an
arbitrary positive number. Then there exists a constant d > 1 such that

2u

Let 7, = min(2u/r, 1). Then [w|, <7, implies ||, <. Indeed, if ||,
<7r, <1, then g,(x)<r/2d, and hence

Hence |zf, <7/2 <.

From Theorems 2.1 and 2.2 we have
TCcg¥cT,.

2.3. THEOREM. Suppose that a ¢-function ¢ satisfies the A,-condition.
Then

T =7

@

Proof. It suffices to notice that if ¢ satisfies the A,-condition, then
@ e ¥,
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Now we shall show that if ¢ does not satisfy the A,-condition, then
79 jg strictly weaker than J,. Namely, we have the following theorem

2.4, THEOREM. Suppose that a p-function ¢ does not satisfy the A,-con-
dition. Then there ewists a sequence (w,) in L*® such that

730 and 0,(%,) > 1 for every integer n > 0.

Prooi. Since ¢ does not satisfy the 4,-condition, it follows that for
an integer n > 0 there exists a number %, > 0 such that

(%) P(2uy) > np (1)

Let (E,) be a sequence of measurable sets in E such that

B, = y
ol 4p ()

and let us put
2u, for telk,,
2,(1) = 0

for t¢FE,.

Then |iz,[l,—~0 for every e W% ie. mny<]¢>0.

Indeed, let » be an arbitrary ¢-function such that y € ¥I%. Let ¢ be
an arbitrary p0s1tne number. Then there exists a constant d > 0 such
that

2u
w(——)<d<p(u) for #>=0.
&

Let N be a natural number such that N > d /e. Hence, for # > N we obtain

©,\  (2u, 1 < d<
%\ IR ntp(un)\n\a’

80 we have ||, < e. On the other hand, by (*) we obtain
@ (2u,)

0, (#,) = ———->1 for every positive integer »;

e (%,)

hence |z,|,+>0
The topology 7<% is always strictly weaker than the topology 7,
2.5. THEOREM. Let ¢ be a ¢-function. Then there ewists a sequence
(@,) in L** such that

a;nf<w>0 and g, (x,) = 1.
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Proof. Let (u,) be an arbitrary sequence of positive numbers such that
u,—>oo, Then, let (E,) be a sequence of measurable sets in F such that

B, = 1/p(u
Define
u, for tek,,
mn(t) =
0 for t¢H,.
Then

o, ll,—~0 for every ye ¥<%, lie. =z, 72 .0.

In fact, let y be an arbitrary ¢-function such that y e ¥<%. Let ¢ be an
arbitrary positive number. Then there exists a number #, > 0 such that

wlule) < ep(u) for u=u,

Let N be a natural number such that 1, > %, for n = N. Then

1
(@, [e) = p(u,/e) - - <e for n>=N;

(%)

hence |»,li,—0. Thus, we obtain =, 722.0.

On the other hand, ¢,(%,) = ¢(u,)/p(u,) = 1; hence mnﬁHO.

§ 3. Comparison of convergence of sequences (z,) in L' in the top-
ologies 7<? and 7 <” with the ¢-modular convergence.

3.1. LEMMA. Let ¢ and p be ¢-functions such thart‘wp<] @. Then z,”>0
implies |w,l,—~0 for a sequence (z,) in L*7.

Proof. Let 4, be a positive number such that g, (1,)—0. Since
p<lg, for an arbitrary number ¢ > 0, there exists a constant d > 0 such
that
(*) plufe) < dp(iyu) for u>=0.

We have
f ¢ (Ao, (2))) dt—0;

>

hence there exists a natural number N such that

(%) [olhlz,(0))dt < ef@ for n>N.
B

From (%) and (x*) it follows that

: (1)
] (Im )dt df Z[m =¢ for wn>=N;
E

hence |z,ll, <& for n > N.
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This lemma implies the following theorem.
g <o

3.2. THEOREM. Let ¢ be a @-function. Then @, 2> 0 implies w, >0

for a sequence (®,) in L*®.

3.3. COROLLARY. Suppose that ¢ satisfies the A,-condition. Then
@, %> 0 if and only if wnf—qﬁ»O for any sequence (»,) in L*°.

Proof. It suffices to remark that if ¢ satisfies the 4,-condition,
then by Theorem 2.3 we have that 7, =7 9.

3.4, THEOREM. Suppose that a o-function ¢ does not satisfy the V,-
condition for large values of w. Then there emists a sequence (2,) in L™ such

that
T ® e
»,——>0 and 2,—0.

Proof. Since ¢ does not satisfy the V,-condition (0.1.3.e) for large
values u, it follows that for every positive integer » there exists a real
number u, with %, >n such that

(*) 20(u,) > (nu,).

Let (E,) be a sequence of measurable sets in £ such that
B, = 1/p(nu,),

and let us put

nu,,

10 for t¢E,.

for tek
mn(t) = "

First, we shall show that wnfiho. Indeed, let v be an arbitrary ¢-func-
tion such that v ¢ ¥<?. Let ¢ be an arbitrary positive number. Then
there exists a number u, > 0 such that

u

Y (—) <ep(uw) for u=wu,.
€

Let N be a natural number such that nu, > u, for » > N. Then
/

@ nu 1
) = L <Le for n>N;
Q‘”( ) w( e )qv(%un) ’

hence e, li, < & for n > N. Thus, we obtain m,,"—@m. On the other hand,

for any real number 2, > 0, there holds by (%)

@,

@(p(}'()wn) > Qt,v (,'_:) =

o (u,)

— for every integer n >
p(nu,) ~ 2 Ty meser =

|+

Thus @,2+0.
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§ 4. The separability of the spaces (L*?, 7<%) and (L*?, 7%). We shall
prove that the space (L%, 77) is separable. Then, since 5 < = 7 9%, the
space (L*%, 7<%) also will be separable.

4.1. LuMMA. Let E = R* and let ¢ be a ¢-function. Let By, = L™ be
the set of all measurable, bounded functions wvanishing outside intervals A,
={(—n,n)X ... X (—n, n ) for some n > 0. Then the set B, is dense in L*® in

ktimes
the sense of @-modular convergence.
Proof. We must show that, if # € L*?, then there exists a sequence

(2,) in B, such that ,~> . Let # € L**. Then 0,(4®) < oo for some 4, > 0.
Let us put .

x(t) for w{E)|<wandteA,,
@, (t) = |

0 for |z(t)| >mnort¢d,.

Then z, € B, and [ ¢(2)z(t) —,(1)|)di—0.
Iz

In fact, we have

¢ (Aolz () =2, (1]} < @ (Alz(D)1),
and

@(Aolw(t) — =, (1)])—>0 almost everywhere.

Hence, by Lebesgue’s bounded convergence theorem ([1], p. 110) we have
[ o (hlz(t)—z, (@) dt 0.
E

4.2. COROLLARY. The set B, is dense in (L', 737).
Proof. This follows from Theorem 3.2.
4.3. THEOREM. The space (L*%, 79°9) is separable,

Proof. Let W, be the set of polynomials withrational coefficients, van-

ishing outside intervals A, = (—n,n)X ... X(—n,n) for some n > 0.
k times

Tt is well known that W, is densein L°? in the topology 7 ,([3]). Since 7<°

T ,, it follows that W, is dense in L°® in the topology 79, i.e. W, > L°%,

where 4 closure is taken in 7<% Then, by the Corollary 4 .2, we obtain

W, = (W,) > L°* > B, = L**, where closures are taken in 7,

§5. The completeness of the spaces (L*?, 7 99y and (L*?, 7<),

5.1. TuEOREM. The spaces (L%, %) and (L*%, 7<) are complete.

v Proof. Let {z,: o € 2} be any Cauchy M-S sequence in L*® in the top-
ology 7 (7¢°), i.e. for every ype P97 (p e ¥<°) and every number 7
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with 0 < » <1 there exists ¢, € 2 such that

(1) e, —2,l, <r for o,0" = ay;
hence
(2) 0,(,—x,) <r for o,0" = o.

We shall show that

¢ TP
v, > (2, —sw) for some xe L*?.

Define
A, () = {te B: [x,(1)—x,(1)] > ¢} for an arbitrary ¢ > 0.
Let ¢ be an arbitrary g-function such that y € 79 (y € ¥<%), and let ¢ be

an arbitrary positive number.” Let r = ep(g). Then from (2) it follows
that

oo (@lpe) = [ pd@t< [ y(o.()—a.(0)l)dt
: Ag,5(€) Ag,5(8)

< [yl -z @)@ <r =eple) for o0 >0
15 .

hence we have
[4,.(e) <e for o,0 = g.
\
It means that this Cauchy M-S sequence {z,: c € 2} satisfies the Cauchy
condition in measure. Since by 0.4.2 the space (8, 7,) is complete, it

follows that there exists a function « € §, such that m(,i:—%m. Hence

(3) , (@ — @) (@ —,).

g<e
g

<9 .
z (2,5 >a), ie. |w,—a],—0 for every

Now, we shall prove that @,
pe P (pe ).

Indeed, let  be an arbitrary g-function such that y € P97 (y € ¥<?).
Let r be an arbitrary number with 0 < r < 1. Then from (1) there exists
0, € & such that

(4) Ty —2, € K, (r) for o,0 >0

The balls I'f,p(r) are by 0.4.3 closed in (8,, 7,). Therefore from (3) and (4)
it follows that )

(5) v—z,c K, (r) for o> q,.

do <¢
Hence l@; — |l,—> 0. Thus, we proved that 2w (8, ).
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For the completeness of the spaces (L*?, 79%) and (L*?, 7<) it suffices
to show that # e L*. Since by 0.3 we have the equalities L** = () L°¥

pewd?
= (N L°%, we shall show that for every y e ¥I? there holds g, (iz) < oo

ye P L9
for all A > 0. In fact, let ¢ be an arbitrary ¢-function such that ¢ e ¥<°.
Then, from (5) it follows that for any number 4 > 0 there exists ¢, € 2
such that l]:v,o—ac[lv, < 1/24; hence

(6) 0y (2A(w00——w)) <1/2A.
On the other hand, since w, e I*?, we have
(1) 0,(27,)) < oo,
Finally, from (6) and (7) it follows that
0y (1) = 0,(}(242, ) +3(22(5—3,))) < 0,(222,) + 0, (24 (25, —2)) < oo

I would like to express my thanks to Doc. R. Le$niewicz for his help
while working on this paper.
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