M. K. Bose (Darjeeling, India)

On special Cesàro–Denjoy–Stieltjes integral

In this paper, we have defined special Cesàro–Denjoy–Stieltjes integral [or, (CDS)-integral] with respect to ω(x) in a way analogous to that of Saks [13] using (ω) C-derivative {Definition 2.2} and ACG* – ω (C-sense) functions. Then we have shown that the (CPS)-integral and the (CDS)-integral are equivalent.

2. Preliminaries. Let ω(x) be a non-decreasing function defined on the closed interval [a, b]. Outside the interval it is defined by ω(x) = ω(a) for x < a and ω(x) = ω(b) for x > b. Let S denote the set of points of continuity of ω(x), D = [a, b] – S and let S₀ denote the union of the pairwise disjoint open intervals (aᵢ,bᵢ) on each of which ω(x) is constant. Let S₁ = {a₁,b₁,a₂,b₂,...}, S₂ = SS₁,S₃ = [a, b] S – (S₀+S₂). Further let S²⁻ and S²⁺ denote the set of those points of S₂ which are, respectively, the set of the left and the right end-points of the intervals of S₀.

Jeffery [10] has defined the class \mathcal{U} of functions $F(x)$ in the following way: $F(x)$ is defined on $[a, b]S$ such that $F(x)$ is continuous on $[a, b]S$ with respect to the set S. If $x₀ \in D$, then $F(x)$ tends to limits as x tends to $x₀+$ and to $x₀-$ over the points of S. For $x < a$, $F(x) = F(a+)$ and for $x > b$, $F(x) = F(b-)$. $F(x)$ may or may not be defined at the points of D. Suppose $\mathcal{U}_0 \subset \mathcal{U}$ contains those functions $F(x)$ in \mathcal{U} such that for every $x₀ \in D$ both $F(x₀+)$ and $F(x₀-)$ are finite.

Notations. $[c, d]$ denotes the closed interval $c \leq x \leq d$ and (c, d) denotes the open interval $c < x < d$. \bar{A} denotes the closure of a set.

A. $F_\omega'(x)$ denotes the ω-derivative [10] of the function $F(x)$ at the point x. $D^+ F_\omega(x)$ and $D^- F_\omega(x)$ denote the right-hand upper and lower ω-derivatives [10] and $D^+ F_\omega(x)$ and $D^- F_\omega(x)$ denote the left-hand upper and lower ω-derivatives. $\bar{\omega}(x)$ will denote the function which is defined as follows: $\bar{\omega}(x) = \omega(x)$ for $x \in S$ and $\bar{\omega}(x) = \frac{1}{2}(\omega(x+) + \omega(x-))$ for $x \in D$.

Definition of (PS)-integral [9]. Let $f(x)$ be defined on $[a, b]$. A function $M(x) \in \mathcal{U}_0$ will be a (PS)-major function of $f(x)$ on $[a, b]$ if (i) $M(a-)=0$; (ii) $M(x)$ is non-decreasing in each of the open intervals $(a, b) \subset S_0$; (iii) $D_+ M_\omega(x) > -\infty$ for $x \in S_3 + S_2^+$, $D_- M_\omega(x) > -\infty$ for $x \in S_3 + S_2^-$; (iv) $D_+ M_\omega(x) \geq f(x)$ for $x \in S_3 + S_2^+$, $D_- M_\omega(x) \geq f(x)$ for $x \in S_3 + S_2^-$ and $M'_\omega(x) \geq f(x)$ for $x \in D$. Analogously a (PS)-minor function is defined.

$f(x)$ will be said to be Perron–Stieltjes integrable [or, (PS)-integrable] on $[a, b]$ if (a) it has at least one (PS)-major function $M(x)$ and at least one (PS)-minor function $m(x)$, and (b) $\inf \{M(b+)\} = \sup \{m(b+)\}$. If $f(x)$ is (PS)-integrable on $[a, b]$ the common value $\inf \{M(b+)\} = \sup \{m(b+)\}$ is called the (PS)-integral of $f(x)$ on $[a, b]$ and is denoted by $F(x) \omega x a b$. Analogously, (PS)-integrals are defined on the open intervals $[a, b)$ and $(a, b]$. We need the following results [9] of the (PS)-integrals in the sequel.

(i) The indefinite Perron–Stieltjes integral belongs to class \mathcal{U}_0.

(ii) If $F(x)$ is the indefinite (PS)-integral of the function $f(x)$ on $[a, b]$, then $F'_\omega(x) = f(x)$ almost everywhere in $[a, b]$ [i.e. except for a set of points in $[a, b]$ having measure zero].

In [9], the class \mathcal{U}_1 of functions $F(x)$ possessing the following properties has been defined: (i) $F(x)$ is defined finitely on $[a, b]$ such that $F(x)$ is (PS)-integrable on $[a, b]$; (ii) at each point x_0 of D, $F(x)$ tends to a finite limit as x tends to x_0 over the points of S; (iii) at a point $x_0 \in D$, $F(x)$ has the value $\frac{1}{2} \{F(x_0+) + F(x_0-)\}$; (iv) $F(x) = F(a)$ for $x < a$ and $F(x) = F(b)$ for $x > b$.

We require the following known definitions and results:

Definition 2.1 [9]. Let a real function $F(x)$ be defined finitely on $[a, b]$ and let it be (PS)-integrable on $[a, b]$. Write

$$ (\omega) C(F; a, b) = \frac{1}{\omega(b+) - \omega(a-)} (PS) \int_a^b F(x) d\omega. $$

$F(x)$ is said to be Cesàro-continuous relative to ω or $(\omega) C$-continuous at x_0 if

$$ \lim_{h \to 0} (\omega) C(F; x_0, x_0 + h) = F(x_0), \quad x_0 + h \in S. $$
where

\[
(\omega) C(F; x_0, x_0+h) = \begin{cases}
\frac{1}{\omega(x_0+h)-\omega(x_0-)} (PS) \int_{x_0}^{x_0+h} F(t) d\omega, & h > 0, \\
\frac{1}{\omega(x_0+h)-\omega(x_0+)} (PS) \int_{x_0}^{x_0+h} F(t) d\omega, & h < 0, \\
F(x_0+h), & \omega(x_0+h)-\omega(x_0+) \neq 0, \\
\omega(x_0+h)-\omega(x_0-) = 0.
\end{cases}
\]

It is easily seen [9] that \(F(x) \) is \((\omega) C \)-continuous at \(x \in D \).

Definition 2.2 [9]. Let \(F(x) \in \mathcal{U}_1 \). For a point \(x \in S \) and for \(h \neq 0 \) with \(x+h \in S \), the function \(\Phi(x, h) \) is defined by

\[
\Phi(x, h) = \begin{cases}
(\omega) C(F; x, x+h) - F(x), & \omega(x+h)-\omega(x) \neq 0, \\
\frac{1}{2} [\omega(x+h)-\omega(x)], & \omega(x+h)-\omega(x) = 0.
\end{cases}
\]

The upper and lower limits of \(\Phi(x, h) \) as \(h \to 0^+ (x+h \in S) \) are called respectively the upper and lower Cesàro-derivates with respect to \(\omega \) [or, upper and lower \((\omega) C \)-derivates] of \(F(x) \) at \(x \) on the right and are denoted by \(CD^+ F_\omega(x) \) and \(CD^- F_\omega(x) \) respectively. If \(CD^+ F_\omega(x) = CD^- F_\omega(x) \), the common value is called the \((\omega) C \)-derivative of \(F(x) \) at \(x \) on the right and is denoted by \(CDF_\omega(x) \). Similarly the \((\omega) C \)-derivates \(CD^- F_\omega(x), CD_+ F_\omega(x) \) and the left \((\omega) C \)-derivative \(\overline{CDF}_\omega(x) \) of \(F(x) \) at \(x \) are defined. If \(CD^+ F_\omega(x) = CD^- F_\omega(x) \), the common value is called the \((\omega) C \)-derivative of \(F(x) \) at \(x \) and is denoted by \(CD\overline{F}_\omega(x) \).

Definition 2.3 [3]. A function \(F(x) \in \mathcal{U}_1 \) is said to be \(AC^*-\omega \) (Cesàro-sense), or briefly, \(AC^*-\omega \) (C-sense) over a set \(E \subset [a, b] \) if for every positive number \(\varepsilon \) there exists a positive number \(\delta \) such that for any set of non-overlapping open intervals \(\{(c_r, d_r)\} \) having end-points in \(E \) with

\[
\sum_r \{\omega(d_r+)-\omega(c_r-)] < \delta
\]

the relations

\[
\sum_r \text{bound}_{c_r < x < d_r} |(\omega) C(F; c_r, x) - F(c_r)| < \varepsilon
\]

and

\[
\sum_r \text{bound}_{c_r < x < d_r} |(\omega) C(F; d_r, x) - F(d_r)| < \varepsilon
\]

hold.

Definition 2.4 [3]. A function \(F(x) \in \mathcal{U}_1 \) is said to be \(ACG^*-\omega \) (Cesàro-sense), or briefly, \(ACG^*-\omega \) (C-sense) on \([a, b] \), if it is \((\omega) C \)-con-
continuous on \([a, b]\) and if the interval \([a, b]\) can be expressed as the sum of a countable number of closed sets on each of which \(F(x)\) is \(AC^* - \omega\) (C-sense).

Definition 2.5 [3]. A function \(F(x) \in \mathcal{U}_1\) is said to be \(AC - \omega\) on a set \(E \subseteq [a, b]\) if for every \(\varepsilon > 0\) there exists a positive number \(\delta\) such that for any set of non-overlapping open intervals \(\{(c_r, d_r)\}\) having endpoints on \(E\) for which

\[
\sum_r \{\omega(d_r +) - \omega(c_r -)\} < \delta
\]

we have

\[
\sum_r |F(d_r) - F(c_r)| < \varepsilon.
\]

The \(\omega\)-derivative [10] and approximate \(\omega\)-derivative [7] are originally defined for functions \(\in \mathcal{U}\). Here we modify the concepts of \(\omega\)-derivative and approximate \(\omega\)-derivative to be applicable at the points of \([a, b] \cap S\) for any function \(g(x)\) defined on \([a, b]\) in the following way:

Definition 2.6. For any \(x \in S\) and a point \(\xi (\neq x)\) in \(S\) we define

\(\chi(x, \xi)\) as follows:

\[
\chi(x, \xi) = \begin{cases}
\frac{g(\xi) - g(x)}{\omega(\xi) - \omega(x)}, & \omega(\xi) - \omega(x) \neq 0, \\
0, & \omega(\xi) - \omega(x) = 0.
\end{cases}
\]

If \(\chi(x, \xi)\) tends to a limit as \(\xi\) tends to \(x\) over the points of \(S\), then this limit is called the \(\omega\)-derivative of \(g(x)\) at \(x\) and is denoted by \(g'_\omega(x)\) and if \(\chi(x, \xi)\) tends to a limit as \(\xi\) tends to \(x\) over the points of \(S\) except for a subset of \(S\) of \(\omega\)-density [6] zero at \(x\), then this limit is called the approximate \(\omega\)-derivative of \(g(x)\) at \(x\) and is denoted by \((ap)g'_\omega(x)\).

Theorem 2.1 [9]. If \(F(x)\) is in class \(\mathcal{U}_1\), then the four (\(\omega\))C-derivates of \(F(x)\) are \(\omega\)-measurable [10] on \([a, b] \cap S\).

Theorem 2.2 [3]. Let \(Q \subseteq [a, b]\) be a closed set having end-points \(c, d\) and complementary intervals \(\{(c_n, d_n)\}\). The sufficient conditions for a function \(F(x) \in \mathcal{U}_1\) to be \(AC^* - \omega\) (C-sense) on \(Q\) are that (i) \(F(x)\) is \(AC - \omega\) on \(Q\),

\[
\sum \text{bound}_{n \in \mathbb{N}} |(\omega)C(F; c_n, x) - F(c_n)| < \infty,
\]

(ii)

\[
\sum \text{bound}_{n \in \mathbb{N}} |(\omega)C(F; d_n, x) - F(d_n)| < \infty,
\]

and (iii) if \(\omega(\beta +) - \omega(\alpha -) = 0 (\alpha, \beta \in \mathbb{Q})\), then \(F(x)\) is constant on \([\alpha, \beta]\).

If \(F(x)\) is \((\omega)C\)-continuous on \([c, d]\), then conditions (i), (ii) and (iii) are also necessary for \(F(x)\) to be \(AC^* - \omega\) (C-sense) on \(Q\).

Theorem 2.3 [3]. If a function \(F(x) \in \mathcal{U}_1\) is \(ACG^* - \omega\) (C-sense) on \([a, b]\),

then \(CDF_\omega(x)\) exists finitely \(\omega\)-almost everywhere in \([a, b] \cap S\). Also \(CDF_\omega(x)\) is equal to \((ap)F'_\omega(x)\) \(\omega\)-almost everywhere in \([a, b] \cap S\).
Special Cesàro-Denjoy-Stieltjes integral

Theorem 2.4 [3]. If a function $F(x) \in \mathcal{U}_1$ is $ACG^{*\omega}$ (C-sense) on $[a, b]$ and $CDF_\omega(x) = 0$ ω-almost everywhere in $[a, b]$ S and if $F(x^+) = F(x^-)$ for $x \in D$, then $F(x)$ is constant on $[a, b]$.

3. The (CPS)-integral. In this article we present the definition of the (CPS)-integral [9] and some of its properties which we shall require in the sequel.

Definition 3.1 [9]. Let a function $f(x)$ be defined [not necessarily finite] on $[a, b]$. A function $M(x) \in \mathcal{U}_1$ is said to be a (CPS)-major function of $f(x)$ on $[a, b]$ if
(a) $M(x)$ is $(\omega)C$-continuous on $[a, b] - D$,
(b) $M(a) = 0$,
(c) $M(x)$ is non-decreasing on each $(a_j, b_j) \subset S_0$,
(d) $CD_- M_\omega(x) > -\infty$ for $x \in S_3 + S_2^-$, $CD_+ M_\omega(x) > -\infty$ for $x \in S_3 + S_2^+$,
(e) $CD_- M_\omega(x) \geq f(x)$ for $x \in S_3 + S_2^-$, $CD_+ M_\omega(x) \geq f(x)$ for $x \in S_3 + S_2^+$,
(f) $M(x^+) - M(x^-) \geq f(x) [\omega(x^+) - \omega(x^-)]$ for $x \in D$.

Analogously a (CPS)-minor function is defined.

Definition 3.2. A function $f(x)$ defined on $[a, b]$ is said to be integrable in the Cesàro-Stieltjes sense relative to ω [or, to be (CPS)-integrable] on $[a, b]$ if (i) it has at least one (CPS)-major function and at least one (CPS)-minor function, and (ii) inf $\{M(b)\} = sup \{m(b)\}$. If $f(x)$ is (CPS)-integrable on $[a, b]$, the common value inf $\{M(b)\} - sup \{m(b)\}$ is called the Cesàro-Perron-Stieltjes integral [or, (CPS)-integral] of the function $f(x)$ on $[a, b]$ and is denoted by $\int_a^b f(x) d\omega$.

Theorem 3.1 [9]. The indefinite (CPS)-integral of $f(x)$ is $(\omega)C$-continuous.

Theorem 3.2 [9]. If $f(x)$ is (CPS)-integrable on $[a, b]$ and $F(x)$ be its indefinite (CPS)-integral and $M(x)$, $m(x)$ are a (CPS)-major function and a (CPS)-minor function for $f(x)$, then each of the differences $M(x) - F(x)$ and $F(x) - m(x)$ is non-decreasing on $[a, b]$.

Theorem 3.3 [9]. If $F(x)$ is the indefinite (CPS)-integral of the function $f(x)$ defined on $[a, b]$, then $CDF_\omega(x) = f(x)$ ω-almost everywhere in $[a, b]$ S. Further for every $x \in D, F(x^+) - F(x^-) = f(x) [\omega(x^+) - \omega(x^-)]$.

Theorem 3.4 [4]. Let a function $f(x)$ defined on $[a, b]$ be summable (LS) ([6], [10]) over a closed set $Q \subset [a, b]$ with end-points c, d and complementary intervals $\{(c_n, d_n)\}$ and let $f(x)$ be (CPS)-integrable on each $[c_n, d_n]$. If
$$\sum_n \text{bound} |(\omega)C(F_n; c_n, x)| < \infty,$$
and
$$\sum_n \text{bound} |(\omega)C(F_n; d_n, x) - F_n(d_n)| < \infty,$$
where
\[F_n(x) = \begin{cases} 0 & \text{for } x = c_n, \\ \int_{c_n}^{x} f(t) \, dt & \text{for } c_n < x \leq d_n, \end{cases} \]
then \(f(x) \) is (CPS)-integrable on the whole interval \([c, d]\) and
\[
(CPS) \int_{c}^{d} f(x) \, dx = (LS) \int_{c}^{d} f(x) \, dx + \sum_{n} (CPS) \int_{c_n}^{d_n} f(x) \, dx - \frac{1}{2} W_n - \frac{1}{2} \{ f(c)[\omega(c+) - \omega(c-)] + f(d)[\omega(d+) - \omega(d-)] \},
\]
where
\[W_n = f(c_n)[\omega(c_n+) - \omega(c_n-)] + f(d_n)[\omega(d_n+) - \omega(d_n-)]. \]

Theorem 3.5 [4]. Suppose the function \(f(x) \) defined on \([a, b]\) is (CPS)-integrable on every segment \([c, \beta]\), where \(a \leq c < \beta < d \leq b \) having (CPS)-integral \(F(x) \) which is also (PS)-integrable on \([c, d]\). If \(f(d) \) is finite when \(d \in D \) and if the limits
\[
J_1 = \lim_{\beta \to d^-} \lim_{\beta \to c^+} (C(F; d, \beta) \text{ if } d \in S, \\
J_2 = \lim_{\beta \to d^-} F(\beta) \text{ if } d \in D
\]
exist and are finite, then \(f(x) \) will be (CPS)-integrable on \([c, d]\) and
\[
(CPS) \int_{c}^{d} f(x) \, dx = J_1 \text{ if } d \in S
\]
and
\[
(CPS) \int_{c}^{d} f(x) \, dx = J_2 + \frac{1}{2} f(d)[\omega(d+) - \omega(d-)] \text{ if } d \in D.
\]

Using similar arguments, the following theorem can be proved:

Theorem 3.6. Suppose the function \(f(x) \) defined on \([a, b]\) is (CPS)-integrable on every segment \([\alpha, d]\), where \(a \leq c < \alpha < d \leq b \) having (CPS)-integral \(F(x) \) which is also (PS)-integrable on \([c, d]\). If \(f(c) \) is finite when \(c \in D \) and if the limits
\[
K_1 = \lim_{\alpha \to c^+} \lim_{\alpha \to e^-} (C(F; c, \alpha) \text{ if } c \in S, \\
K_2 = \lim_{\alpha \to c^+} F(\alpha) \text{ if } c \in D
\]
exist and are finite, then \(f(x) \) will be (CPS)-integrable on \([c, d]\) and
\[
(CPS) \int_{c}^{d} f(x) \, dx = K_1 \text{ if } c \in S.
\]
Special Cesàro-Denjoy-Stieltjes integral

\[(CPS) \int_c^d f(x) \, d\omega = K_2 + \frac{1}{2}[\omega(c+) - \omega(c-)] \quad \text{if } c \in D. \]

4. The \((CDS)\)-integral. Here we shall introduce the definition of \((CDS)\)-integral and shall prove a few important properties.

Definition 4.1. Let \(f(x)\) be a function defined on \([a,b]\). If there exists a function \(F(x) \in \mathcal{W}_1\) which is \(ACG^* - \omega\) (C-sense) on \([a,b]\) and which is such that \(CDF_\omega(x) = f(x)\) \(\omega\)-almost everywhere on \([a,b]S\) and \(F(x+) - F(x-) = f(x) \ [\omega(x+) - \omega(x-)]\) for \(x \in D\), then \(f(x)\) is said to be special Cesàro–Denjoy–Stieltjes integrable \([\text{or, \(CDS\)-integrable}]\) on \([a,b]\) and the function \(F(x)\) is called indefinite \((CDS)\)-integral of \(f(x)\) on \([a,b]\); the difference \(F(b) - F(a)\) is termed definite \((CDS)\)-integral of \(f(x)\) over \([a,b]\) and is denoted by \((CDS) \int_a^b f(x) \, d\omega\).

It follows by Theorem 2.4 that if \(F(x)\) and \(G(x)\) are any two indefinite \((CDS)\)-integrals of \(f(x)\) on \([a,b]\), then \(F(x) - G(x)\) is constant on \([a,b]\). The definite \((CDS)\)-integral of a function \(f(x)\), \((CDS)\)-integrable on \([a,b]\) is therefore unique.

Theorem 4.1. A function \(f(x)\) which is \((CDS)\)-integrable on \([a,b]\) is \(\omega\)-measurable on \([a,b]\).

Proof. Let \(F(x)\) be an indefinite \((CDS)\)-integral of \(f(x)\). Then \(CDF_\omega(x) = f(x)\) \(\omega\)-almost everywhere in \([a,b]S\). So by Theorem 2.1 \(f(x)\) is \(\omega\)-measurable on \([a,b]S\). Since the set \(D\) is at most denumerable, \(f(x)\) is \(\omega\)-measurable on \([a,b]\).

Theorem 4.2. A function \(f(x)\) which is \((CDS)\)-integrable on \([a,b]\) is finite \(\omega\)-almost everywhere.

Proof. The proof follows from Theorem 2.3 and Definition 4.1.

5. The \((CDS)\)-integral includes the \((CPS)\)-integral.

Preliminary lemmas. Let \(F(x) \in \mathcal{W}_1\) be \((\omega)C\)-continuous on \([a,b]\) and non-decreasing on each of the open intervals \((a_i, b_i) \subset S_0\) and let for every natural number \(n\), \(E_n\) denote the set of points \(x\) of \([a,b]\) such that for \(x + h \in S\) with \(|h| < 1/n\) we have

1. \((\omega)C(F; x, x+h) - F(x) \geq -\frac{1}{n} [\omega(x+h) - \omega(x-)], \quad h > 0;\)
2. \(F(x) - (\omega)C(F; x, x+h) \geq -\frac{1}{n} [\omega(x+) - \omega(x+h)], \quad h < 0.\)

Let

\[G(x) = \begin{cases}
0, & x = a, \\
(PS) \int_a^x F(t) \, d\omega, & a < x \leq b.
\end{cases} \]
Lemma 5.1. If \(\{x_k\} \) is a convergent sequence of points of \(E_n \) and if the limit of the sequence belongs to \(S \), then

\[
\lim_{x_k \to x} F(x_k) = F(x).
\]

Proof. Choose \(h > 0 \) with \(h < 1/n \) such that \(x + h \in S \). We consider those \(x_k \) for which \(x_k + h_k = x + h, 0 < h_k < 1/n \). From (1) we get

\[
(\omega) C(F; x_k, x + h) - F(x_k) \geq -\frac{1}{n} [\omega(x + h) - \omega(x_k)].
\]

Case (a). Let \(\omega(x + h) - \omega(x) \neq 0 \). Letting \(x_k \to x \) in (3) we get

\[
(\omega) C(F; x, x + h) \geq \lim_{x_k \to x} F(x_k) - \frac{1}{n} [\omega(x + h) - \omega(x)].
\]

Since \(F(x) \) is \((\omega) C\)-continuous, taking limit as \(h \to 0 \) we get

\[
F(x) \geq \lim_{x_k \to x} F(x_k).
\]

Case (b). Let \(\omega(x + h) - \omega(x) = 0 \). Firstly, let \(x_k \to x \) from the right. Then since on the right of \(x \), \(F(x) \) is continuous we have

\[
F(x) = \lim_{x_k \to x} F(x_k)
\]

and the lemma is proved. Next let \(x_k \to x \) from the left. Then taking limit as \(x_k \to x \) in (3), we get

\[
F(x) = \lim_{x_k \to x} F(x_k).
\]

Therefore in any case we have

\[
F(x) \geq \lim_{x_k \to x} F(x_k).
\]

Similarly choosing \(h' < 0 \) with \(|h'| < 1/n \) and using relation (2) we get

\[
F(x) = \lim_{x_k \to x} F(x_k).
\]

From (4) and (5)

\[
F(x) = \lim_{x_k \to x} F(x_k).
\]

This completes the proof of the lemma.

Lemma 5.2. If \(x \in S \) is a limit point of \(E_n \), then \(x \in E_n \) and if \(x \in D \) is a limit point of \(E_n \) on the right, then relation (1) holds for \(x = x \) and relation (2) with \(F(x) \) replaced by \(F(x+) \) holds for \(x = x \). Further if \(x \in D \) is a limit point of \(E_n \) on the left, then relation (2) holds for \(x = x \) and relation (1) with \(F(x) \) replaced by \(F(x-) \) holds for \(x = x \).
Proof. Case (i). Let the limit point α of E_n belong to S. Suppose $\{\alpha_k\}$ is a convergent sequence of points of E_n of which α is the limit. Choosing $h > 0$ with $h < 1/n$ we get as in Lemma 5.1

\begin{equation}
(\omega) C(F; \alpha_k, \alpha + h) - F(\alpha_k) \geq -\frac{1}{n} \left(\omega(\alpha + h) - \omega(\alpha_k) \right).
\end{equation}

We can suppose that $\omega(\alpha + h) - \omega(\alpha) \neq 0$. Otherwise it is clear that $F(\alpha + h) - F(\alpha) \geq 0$ and so

\begin{equation}
(\omega) C(F; \alpha, \alpha + h) - F(\alpha) \geq -\frac{1}{n} \left(\omega(\alpha + h) - \omega(\alpha) \right).
\end{equation}

Now as $\alpha_k \to \alpha$ we get from (6) using Lemma 5.1

\begin{equation}
(\omega) C(F; \alpha, \alpha + h) - F(\alpha) \geq -\frac{1}{n} \left(\omega(\alpha + h) - \omega(\alpha) \right).
\end{equation}

Thus α satisfies relation (1). Similarly we can show that α satisfies (2). So $\alpha \in E_n$.

Case (ii). Next, let $\alpha \in D$ be a limit point of E_n on the right. Suppose $\{\alpha_k\}$ is a sequence of points of E_n converging from right to α. Choose $h' < 0$ with $|h'| < 1/n$ such that $\alpha + h' \in S$. In this case we can choose h'_k with $|h'_k| < 1/n$ corresponding to each α_k for sufficiently large k such that $\alpha_k + h'_k = \alpha + h'$. We have

\begin{equation}
F(\alpha_k) - (\omega) C(F; \alpha_k, \alpha + h') \geq -\frac{1}{n} \left(\omega(\alpha_k) - \omega(\alpha + h') \right).
\end{equation}

Letting k tend to infinity we get

\begin{equation}
F(\alpha) - (\omega) C(F; \alpha, \alpha + h') \geq -\frac{1}{n} \left(\omega(\alpha) - \omega(\alpha + h') \right),
\end{equation}

from which we get as $h' \to 0$

\begin{equation}
F(\alpha) - F(\alpha) \geq -\frac{1}{n} \left(\omega(\alpha) - \omega(\alpha -) \right).
\end{equation}

Now choose $h > 0$ with $0 < h < 1/n$. Then for $\alpha + h \in S$ we get as above

\begin{equation}
(\omega) C(F; \alpha_k, \alpha + h) - F(\alpha_k) \geq -\frac{1}{n} \left(\omega(\alpha + h) - \omega(\alpha_k) \right)
\end{equation}

and so for sufficiently large k for which $\omega(\alpha + h) - \omega(\alpha_k) \neq 0$ we have

\begin{equation}
G(\alpha + h) - G(\alpha_k) - F(\alpha_k) [\omega(\alpha + h) - \omega(\alpha_k)] \geq -\frac{1}{n} \left[\omega(\alpha + h) - \omega(\alpha_k) \right]^2.
\end{equation}

Letting k tend to infinity we have

\begin{equation}
G(\alpha + h) - G(\alpha) - F(\alpha) [\omega(\alpha + h) - \omega(\alpha)] \geq -\frac{1}{n} \left[\omega(\alpha + h) - \omega(\alpha) \right]^2.
\end{equation}

From (8) and (9) and the relation

\begin{equation}
G(\alpha) - G(\alpha) = F(\alpha) [\omega(\alpha) - \omega(\alpha)] \quad \text{[by result (ii) of (PS)-integral]},
\end{equation}

we get

\begin{equation}
(\omega) C(F; \alpha, \alpha + h) - F(\alpha) \geq -\frac{1}{n} \left[\omega(\alpha + h) - \omega(\alpha) \right]
\end{equation}

\begin{equation}
> -\frac{1}{n} \left[\omega(\alpha + h) - \omega(\alpha -) \right].
\end{equation}
If for all \(k, \omega(\alpha + h) - \omega(\alpha) = 0 \), then \(\omega(\alpha + h) - \omega(\alpha) = 0 \) and so
\[
\omega C(F; \alpha, \alpha + h) = F(\alpha),
\]
and again we get relation (10) which together with relation (7) prove the relevant assertions made in the lemma.

Case (iii). The case when \(\alpha \in D \) is a limit point of \(E_n \) on the left, can be treated as in case (ii). This completes the proof of the lemma.

Theorem 5.1. A function \(f(x) \) which is (CPS)-integrable on \([a, b]\) is (CDS)-integrable on \([a, b]\) and
\[
(CDS) \int_a^b f(x) \, d\omega = (CPS) \int_a^b f(x) \, d\omega.
\]

Proof. Let \(F(x) \) be the indefinite (CPS)-integral of \(f(x) \) on \([a, b]\). Let \(\varepsilon > 0 \) be chosen arbitrarily. Then \(f(x) \) has a (CPS)-major function \(U(x) \) and a (CPS)-minor function \(V(x) \) such that \(U(b) - F(b) < \varepsilon/3 \) and \(F(b) - V(b) < \varepsilon/3 \). Let for every natural number \(m \), \(A_m \) denote the set of points \(x \) of \([a, b]\) such that for \(x + h \in S \) with \(|h| < 1/m \) we have
\[
\begin{align*}
(11) & \quad (\omega) C(U; x, x + h) - U(x) \geq -\frac{1}{2} m [\omega(x + h) - \omega(x)], \quad h > 0, \\
(12) & \quad U(x) - (\omega) C(U; x, x + h) \geq -\frac{1}{2} m [\omega(x + h) - \omega(x)], \quad h < 0;
\end{align*}
\]
and let for every natural number \(n \), \(B_n \) denote the set of points \(x \) of \([a, b]\) such that for \(x + b \in S \) with \(|b| < 1/n \) we have
\[
\begin{align*}
(13) & \quad (\omega) C(V; x, x + h) - V(x) \leq \frac{1}{2} n [\omega(x + h) - \omega(x)], \quad h > 0, \\
(14) & \quad V(x) - (\omega) C(V; x, x + h) \leq \frac{1}{2} n [\omega(x + h) - \omega(x)], \quad h < 0.
\end{align*}
\]
Let \(E_{mn} = A_m B_n \), \(p = \max(m, n) \) and \(E_{mnj} \) denote the common part of \(E_{mn} \) and the closed interval \([j/p+1, j+1/p+1]\). Then
\[
[a, b] = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sum_{j=-\infty}^{\infty} E_{mnj}.
\]
Now we shall show that \(F(x) \) is \(AC^* - \omega \) (C-sense) on \(E_{mnj} \). Let \(\{(c_r, d_r)\} \) be any set of non-overlapping intervals having end-points in \(E_{mnj} \).

Case (a). Let \(c_r \) be a point of \(E_{mnj} \) or a limit point of \(E_{mnj} \) in case \(c_r \in S \) or else a limit point of \(E_{mnj} \) on the right when \(c_r \in D \). Then for \(c_r < x \leq d_r \) with \(\omega(x) - \omega(c_r) \neq 0 \)
\[
\begin{align*}
(15) & \quad (\omega) C(F; c_r, x) - F(c_r) \\
& \quad = (\omega) C(U; c_r, x) - U(c_r) - \\
& \quad \quad \frac{1}{\omega(x) - \omega(c_r)} \quad (PS) \int_{c_r}^{x} [U(t) - F(t)] \, d\omega + U(c_r) - F(c_r) \\
& \quad \geq (\omega) C(U; c_r, x) - U(c_r) - [U(d_r) - F(d_r)] + [U(c_r) - F(c_r)].
\end{align*}
\]
Special Cesàro-Denjoy-Stieltjes integral

\[\begin{align*}
&\geq -\frac{1}{m} \left[\omega(x+) - \omega(c_r-) \right] - \left[U(d_r) - F(d_r) \right] + \left[U(c_r) - F(c_r) \right] \\
&\text{[by Theorem 3.2]} \\
&\text{[by (11) and Lemma 5.2].}
\end{align*} \]

Relation (15) is obviously satisfied when \(\omega(x+) - \omega(c_r-) = 0 \). Hence

\[\begin{align*}
\text{bound } \left[(\omega) C(F; c_r, x) - F(c_r) \right] &\geq -\frac{1}{m} \left[\omega(d_r+) - \omega(c_r-) \right] - \left[U(d_r) - F(d_r) \right] + \left[U(c_r) - F(c_r) \right].
\end{align*} \]

Case (b). If \(c_r \in D \) be a limit point of \(E_{mnj} \) on the left, we can show in a similar way

\[\begin{align*}
\text{bound } \left[(\omega) C(F; c_r, x) - F(c_r) \right] &\geq -\frac{1}{m} \left[\omega(d_r+) - \omega(c_r-) \right] - \left[U(d_r) - F(d_r) \right] + \left[U(c_r) - F(c_r) \right].
\end{align*} \]

Therefore

\[\begin{align*}
(16) \quad &\sum_{c_r < x \leq d_r} \text{bound } \left[(\omega) C(F; c_r, x) - F(c_r) \right] + \sum_{c_r < x \leq d_r} \text{bound } \left[(\omega) C(F; c_r, x) - F(c_r) \right] \\
\geq &-\frac{1}{m} \sum_r \left[\omega(d_r+) - \omega(c_r-) \right] - 2 \left[\{ U(b) - F(b) \} - \{ U(a) - F(a) \} \right] \\
> &-\frac{1}{m} \sum_r \left[\omega(d_r+) - \omega(c_r-) \right] - 2\varepsilon/3 > -\varepsilon
\end{align*} \]

provided

\[\sum_r \left[\omega(d_r+) - \omega(c_r-) \right] < 2\varepsilon/3m, \]

where \(\sum \) and \(\sum \) denote the summations over \(r \) for cases (a) and (b) respectively.

Similarly, using relation (13) and a result analogous to Lemma 5.2 corresponding to the set \(B_n \), which obviously holds, we get

\[\begin{align*}
(17) \quad &\sum_{c_r < x \leq d_r} \text{bound } \left[(\omega) C(F; c_r, x) - F(c_r) \right] + \\
&+ \sum_{c_r < x \leq d_r} \text{bound } \left[(\omega) C(F; c_r, x) - F(c_r) \right] < \varepsilon
\end{align*} \]

provided

\[\sum_r \left[\omega(d_r+) - \omega(c_r-) \right] < 2\varepsilon/3n. \]

Combining (16) and (17) we get

\[\begin{align*}
(18) \quad &\sum_{c_r < x \leq d_r} \text{bound } \left| (\omega) C(F; c_r, x) - F(c_r) \right| + \\
&+ \sum_{c_r < x \leq d_r} \text{bound } \left| (\omega) C(F; c_r, x) - F(c_r) \right| < \varepsilon
\end{align*} \]
provided
\[\sum_r \text{bound}_{c_r < x < d_r} |(\omega) C(F; c_r, x) - F(c_r)| < \epsilon \]
where
\[\delta = \min (2\epsilon/3m, 2\epsilon/3n). \]
From (18) we get
\[(19) \sum^{(2)} |F(c_r) - F(c_r^-)| \leq \epsilon. \]
So from (18) and (19) we get
\[\sum^{(2)} \text{bound}_{c_r < x < d_r} |(\omega) C(F; c_r, x) - F(c_r)| < 2\epsilon \]
provided
\[\sum_r [\omega(d_r^+) - \omega(c_r^-)] < \delta. \]
Similarly using relations (12) and (14) we get
\[\sum^{(2)} \text{bound}_{c_r < x < d_r} |(\omega) C(F; d_r, x) - F(d_r)| < 2\epsilon \]
provided
\[\sum_r [\omega(d_r^+) - \omega(c_r^-)] < \delta. \]
It follows that \(F(x) \) is \(AC^* - \omega \) (C-sense) on \(\bar{E}_{mnj} \). Since each \(\bar{E}_{mnj} \) is closed and since (by Theorem 3.1), \(F(x) \) is \((\omega) C \)-continuous on \([a, b] \), \(F(x) \) is \(ACG^* - \omega \) (C-sense) on \([a, b] \). Again by Theorem 3.3, \(CDF_{\omega}(x) = f(x) \omega \)-almost everywhere in \([a, b] \) and \(F(x^+) - F(x^-) = f(x) [\omega(x^+) - \omega(x^-)] \) for \(x \in D \), and so \(f(x) \) is (CDS)-integrable on \([a, b] \) and
\[(CDS) \int_a^b f(x) d\omega = F(b) - F(a) = (CPS) \int_a^b f(x) d\omega. \]
This completes the proof of the theorem.

6. The (CPS)-integral includes the (CDS)-integral.

Lemma 6.1. If \(F(x) \in \mathcal{U}_1 \) is \(AC - \omega \) on a closed set \(Q \), then it is \(BV \) on \(Q \).

The proof can be completed by proceeding as in the proof of Theorem 5 [1].

Lemma 6.2. If a function \(F(x) \) is \(BV \) on \([a, b] \), then \(F'(x) \) exists finitely \(\omega \)-almost everywhere on \([a, b] \) and is summable (LS) on \([a, b] \).

The proof follows by usual arguments (cf. [11], Theorem 5.14 and [6], Theorem 6.3).
Theorem 6.1. If a function \(f(x) \) is (CDS)-integrable on \([a, b]\), then it is (CPS)-integrable on \([a, b]\).

Proof. Let \(F(x) \) be an indefinite (CDS)-integral of \(f(x) \) on \([a, b]\). Let \(K \) be the set of points \(x \) of \([a, b]\) throughout no closed neighbourhood of which \(f(x) \) is (CPS)-integrable. Then it is easily seen that \(K \) is a closed set. We now show that \(K \) is a null set. To prove this we assume that \(K \) is not null. Let \((\alpha_r, \beta_r)\) be any complementary interval of \(K \) and let \(p_r, q_r \) be two points of \(S \) such that \(\alpha_r < p_r < q_r < \beta_r \). Then \(f(x) \) is (CPS)-integrable on \([p_r, q_r]\) and by Theorem 5.1

\[
(CPS) \int_{p_r}^{q_r} f(t) \, d\omega = F(q_r) - F(p_r).
\]

Since \(F(x) \in \mathcal{W}_1, F(q_r) \) and \(F(p_r) \) tend to finite limits as \(q_r, p_r \) tend to \(\beta_r, \alpha_r \) respectively when \(\beta_r, \alpha_r \in D \) and since \(f(x) \) is \((\omega)C\)-continuous

\[
\lim_{x \to \beta_r} (\omega)C(F; \beta_r, x) = F(\beta_r)
\]

and

\[
\lim_{x \to \alpha_r} (\omega)C(F; \alpha_r, x) = F(\alpha_r)
\]

and hence by Theorems 3.5 and 3.6, \(f(x) \) is (CPS)-integrable on \([\alpha_r, \beta_r]\). Therefore \(K \) has no isolated points. Since \(f(x) \) is \(ACG^* - \omega \) (C-sense) on \([a, b]\), there exist a countable number of closed sets \(E_n \) such that \([a, b] = \sum E_n \) and \(F(x) \) is \(AC^* - \omega \) (C-sense) on each \(E_n \). Since \(K = \sum KE_n \), there exists, by Baire's theorem, a closed interval \([l, m]\) and a positive integer \(n \) such that \(K(l, m) \) is not null and \(K[l, m] = KE_n[l, m] = Q \) (say). Thus \(F(x) \) is \(AC^* - \omega \) (C-sense) on \(Q \). Let \([c, d]\) be the smallest closed interval containing \(Q \). Denote the component intervals of \([c, d] - Q\) by \(\{(c_n, d_n)\} \). We now define the function \(G(x) \) as follows:

\[
G(x) = \begin{cases}
F(x) & \text{for } x \in Q, \\
\bar{F}(c_n) + \frac{\bar{\omega}(x) - \omega(c_n^+)}{\omega(d_n^-) - \omega(c_n^+)} \{\bar{F}(d_n) - \bar{F}(c_n)\} & \text{for } c_n < x < d_n, \omega(d_n^-) \neq \omega(c_n^+), \\
\bar{F}(c_n) = \bar{F}(d_n) & \text{for } c_n < x < d_n, \omega(d_n^-) = \omega(c_n^+), \\
F(c) & \text{for } x < c, \\
F(d) & \text{for } x > d;
\end{cases}
\]

where

\[
\bar{F}(c_n) = \begin{cases}
F(c_n) & \text{when } c_n \in S, \\
F(c_n^+) & \text{when } c_n \in D;
\end{cases}
\]
and
\[F(d_n) = \begin{cases} F(d_n) & \text{when } d_n \in S, \\ F(d_n-) & \text{when } d_n \in D. \end{cases} \]

Since \(F(x) \) is \(AC^* - \omega \) (C-sense) on \(Q \), it is \(\overline{AC} - \omega \) on \(Q \) and so by Lemma 6.1, it is \(BV \) on \(Q \). Therefore (cf. [7], Theorem 3.1) \(G(x) \) is \(BV \) on \([c, d]\) and so by Lemma 6.2 \(G'(x) \) exists finitely \(\omega \)-almost everywhere in \([c, d]\) \(S \). Now \(G'(x) = (ap) F'(x) \) \(\omega \)-almost everywhere in \(QS \). Therefore by Theorem 2.3 \(G'(x) = CDF'(x) = f(x) \) \(\omega \)-almost everywhere in \(QS \). Therefore by Lemma 6.2, \(f(x) \) is summable \((LS) \) on \(QS \). Again
\[\frac{G(x+) - G(x-)}{\omega(x+) - \omega(x-)} = \frac{F(x+) - F(x-)}{\omega(x+) - \omega(x-)} = f(x) \]
for \(x \in QD \). Therefore \(f(x) \) is summable \((LS) \) on \(QD \). It follows that \(f(x) \) is summable \((LS) \) on \(Q \). Since \(F(x) \) is \(AC^* - \omega \) (C-sense) on \(Q \), by Theorem 2.2,
\[\sum_{n} \text{bound } |(\omega) C(F; c_n, x) - F(c_n)| < \infty \]
and
\[\sum_{n} \text{bound } |(\omega) C(F; d_n, x) - F(d_n)| < \infty \]
and so
\[\sum_{n} \text{bound } |(\omega) C(F_n; c_n, x)| < \infty \]
and
\[\sum_{n} \text{bound } |(\omega) C(F_n; d_n, x) - F_n(d_n)| < \infty, \]
where \(F_n(x) = F(x) - F(c_n) \). Therefore by Theorem 3.4, \(f(x) \) is \((CPS) \)-integrable in \([c, d]\). This is clearly impossible, since \(c \) and \(d \) are end-points of a closed subset of \(K \). The set \(K \) must therefore be null. This completes the proof of the theorem.

In conclusion, I express my gratitude to Dr. M. C. Chakravarty for his kind help and suggestions in the preparation of the paper.

References

