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On a multistage optimization problem (I)

1. Introduction and formulation of the problem. Symbols:

j, m, mjy n, r — natural numbers;
A, В — mxr ,  m x 1 (resp.) block matrices;
Aj, Bj — rrijXr, nijX 1 (resp.) given numerical matrices, j  =  1,2 
V — rx  1 matrix of the unknowns;
Qa (Qb’ Qv) — rank of the matrix A (В , V, resp);

Ai Вг

A = a 2 , в  = в 2

An в„_
We assume that

П
1 ^  m < r, QA =  m =  Y, rrij,

j=i

which gives

(1) 0 < qa . =  rrij < r for j  = 1 , 2 , . . . ,  n.
J J

Let V = V0  be the solution of the equation system

(2) AV — В 

realizing

(3) min VT V.

This solution is unique (given e.g. by the method of Lagrange’s factors) 
and has the form

(4) V0  =  AT(AAT) - 1 B i

where the m x m  matrix AAT is symmetric and non-singular (see (Z^).
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The purpose of this paper is to solve problem (2), (3) using a multistage 
method in a general case, i.e. for n >  2. The two-stage case (n =  2) was 
solved in connection with some problems of the compensating computation 
([1], [4], cf. also Section 2 of this paper).

Thus we consider, instead of system (2), the system of subsystem of (2), 
namely the system

(5) Aj V =  Bj for j  =  t, 2 , . . . ,  n, n ^ 2.

First, we find the solution Vl =  F(1) of the problem P b i.e. problem (3), (5) 
with j  =  1 (1-st stage); then such a matrix V{2) is found as the sum 
V2 =  к(1) + К(2> be the solution of the problem P2: (3), (5) with j  =  1 ,2  
(2-nd stage); then the next matrix F(3) is found so as the sum V3 = V(1) +  
-\-V(2) + V(3) to be the solution of the problem P3: (3), (5) with j  — 1 ,2 ,3  
(3-rd stage), etc. An attempt will be made of finding the rx 1 matrices VU), 
j  — 2 , 3 , . . . , n ,  as the solutions of specially for this purpose transformed 
equations (5); thus

(5') Àj V = È j, 7 = 2 ,3 , . . . ,  и.

If VU) are required to fulfil still condition (3) (which is not necessary) all 
the V(j) will be of the same structure.

Finally, for an arbitrary k-th stage the following problem is formulated: 
P ro b lem . We are looking for non-zero matrices Âj, Bj , j  =  2 , 3 , . . . ,  к 

such that the sum
к

(6) vk =  X V u\ 1 < k ^ n ,
j-  i

be the solution of the problem Pk (i.e. (3), (5) with j  — 1 ,2 , . . . ,  k), where 
Vij) (j =  1 ,2 , . . . ,  k) satisfy the extremum (3) under the condition A 1 V =  B 1 

for F(1) and under conditions (5') for j  — 2,2>,.. . ,k.
After finding matrices Aj, Bj , we get (see formula (4))

(7) Vij) =  Â j  ( Â j Â j r 1 Bj for j  =  2 ,3 , . . . ,  k.

F(1) will be of an analogous form, i.e.

(8) K(1) =  A K A . A D ^ B , .

2. Genesis of the problem. Г In the compensating computation the 
so-called compensation of the direct conditioned observations leads to looking 
for corrections V fulfilling conditions (3), (2) (possibly after the preceding 
linearization of the conditions if they were non-linear) ([1]). It happens, 
however, that system (2) is not at once fully known and the particular 
conditions (5) are obtained successively as investigations develop, often with 
new unknowns (then the previous matrices must be completed with a suitable 
number of zero columns what, of course, does not change the matrix rank).
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In this way new equation systems with new unknowns can be practically 
added endlessly and solved in stages. The above-presented idea of the mul­
tistage procedure gives the advantage that when considering further (of 
higher j) systems (5) everything need not be computed from the beginning 
and the previously obtained results can only be corrected by suitably chosen 
matrices.

2° The equation system (2) may be known, but out of practical reasons: 
it is sometimes more convenient to divide it into subsystems of the form (5). 
It is possible e.g. to join into group j  = 1 all the homogenous equations. 
Then, of course, V(1) =  0, V(2) =  A 2 (A2 A2 ) ~ 1 B2 and only Aj,Bj  (j = 3,. . .  
...,n) matrices are modified, moreover, all the Bj matrices (/ = 2 ,3 , . . . ,  л) 
do not contain any zero elements.

k -  1

3. T heo rem  1. Let assumption (Zx) be fulfilled and let Vk- X =  £  V(j)
j= i

(k constant = 2 ,3 , . . . ,  л) be a solution of the problem Pk- X. If the sum 

(9) Vt = V t - ,  + V<u

is also a solution of the problem Pk, then V =  V{k) fulfils the relations

( 10)
AjV =  0 for j  =  1,2,  . . . , / c - l ,  

Ak V =  Bk — Ak Vk  ̂!,

and conversely. Among the solutions of system (10) there exists a V =  V(k) 
such that Vk of the form (9) is a solution of the problem Pk.

Proof. Let us suppose that the sum (9) is a solution of the problem Pk. 
On the other hand, this solutions is of the form (see formula (4))

Ay~ 7 At v Bk
a 2 Aj Аг B}

_Ak_ \ j A k_ 1 ^
 .

L / J k _

This and (9) give an equality which multiplied left-hand sided by 
implies the equality

Bx Bk At Vik)
B2

_
B2

+
a 2 v {k)

Bk-1 Bk-к Ak- k V (fc)
Bk Ak K-k_ Ak V(k)

Hence V{k) fulfils equations (10).

A i
A 2  

Ak
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Conversely, suppose that V = V(k) fulfils equations (10). This and the 
fact that AjVk_ x = Bj (j =  l ,2 , . . . , f c  — 1) imply that Vk of the form (9) 
satisfies the system (5) for j  =  1 , 2 , . . . , /с. But system (10) has an infinite 
number of solutions (because m1 + m 2 + ... +mk < r), among them also 
V =  Vk—Vk- lt where Vk is of the form (11). Taking just as this solution 
Vik\  we obtain the solution of the problem Pk in the form (9) (which is the 
same as the form (6)). This completes the proof.

4. Additional conditions on Aj. Theorem 1 and formula (7) show that 
the matrices Âk, Bk should be looked for among non-zero mkxr, mkx l  
(resp.), mk >  1 , matrices such that

A j Â l ( Â kÂl)~ 1 Ëk = 0 for j  =  1 ,2 , . . . ,  fc-1,

AkAk (ÂkÀk) 1 Bk — Bk — Ak Vk-x.

Then in the system of ml + m 2 +  ... +  mk linearly independent equations (12) 
(see (Zj) and (1)) there are mk(r+ l )  unknowns, where m1 + m 2 +  ... +m k 
< r <  mk(r-hi). Hence Àk, Ëk can fulfil some additional conditions, e.g. the 
following ones:

A jA l  =  0 for j  =  l , 2 , . . . , k - l ,
(13)  ̂ ь - 1

Ak = Ak-  £  Fu At,
i=  1

where Fki denote non-zero, and at the moment unknown, mk x m, matrices. 
Then the following conclusions result

(14) (i) mk =  rnk,

(ii) conditions (12) concerning j  =  l , 2 , . . . , k — 1 are fulfilled,

(iii) Ak = Âk+ kj ^ F u At (by (13)).
• = l

This together with the last of relations (12) and with the first к — 1 relations 
(13) give
(15) Bk =  Bk — Ak Vk- X.

It is clear that the class of matrices Ak fulfilling (13) is a subclass 
of matrices fulfilling (12).

5. On some matrices and their properties. Two following properties 
result from (Z^ and from the Cauchy-Binet theorem ([5]) on the deter­
minant of the matrix product:

(Wi) The rrijXmj matrices A jA j  {j =  l , 2 , . . . , n )  are symmetric and non­
singular.

(W2) The r x r  matrices A j (A j A j )_1 Aj (j =  1, 2 , . . . ,  n) are symmetric and 
singular. »
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Define the matrix

(16) Aj =
/
A j - 1 U ~  AJ (AJ A j - 1 A j ) "1 Aj Aj_ J

for j  =  0 ,
for j  = 1 , 2 , . . . ,  n

(/ — the identity r x r  matrix). We shall prove that :

(W3)

(16')

there exist matrices A-} (j =  1 , 2 given by formula (16); they 
are r x r ,  symmetric, singular, qAj =  r — rrij; moreover,

and Aj =  Aj for any arbitrary natural number p and for j  =  1 ,2 , . . n.

Indeed, if the matrices Aj (j =  1 ,2 ,  ...,n) exist, they are r x r  and sym­
metric. Singularity and the rank of A} result from the fact that AjAj =  0, 
so (see (1)) every matrix Aj (j — 1 , 2 , . . . ,  n) has r — rrij < r lineary independent 
rows only.

The proof of formula (16') is by induction. The existence of the matrix 
Ax results from property (W^ for j  =  1. In turn, the rank of the matrix

~AC A\ T A\
A q

A\
_ a 2 __ i— _ A 2 _ _ A 2 _

is equal to its dimension, i.e. т^Л-т2  (see (Zj)). Hence its determinant Ф 0» 
which implies (by the theorem on block calculation of determinants) that 
|Aj A\\ \A 2  Aj A2\ ф 0 and QA2 j lAj = m 2. Assuming that the ranks of the 
matrices

Ak
Ak+1

Ak-1
Ak
Ak+1

T

and AkAk- \A k  are equal to mfc +  mk+1, mk, respectively, we get in an 
analogous manner that \AkAk~i Aj\  Ии + 1 Ak Al+1\ ф 0 which proves the 
existence of all matrices A} (j =  1 , 2 , . . . ,«) .

The proof that dj =  Aj for a natural number p and for j  =  1 ,2  
is simple. First it is proved that A] — A} (induction with respect to j ) and 
from it the above property follows evidently.

We obtained here also the property

(W4) the matrices AjAj^.x A j  ïo t  j  =  1 ,2 , . . . ,  n are т} хт}, symmetric and 
non-singular.

If we write

(17) Dj =  I - A j - l A j ( A j A j - l Aj) 1 Aj for j  =  1 ,2 , . . . ,  n,
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then (16) and (17) imply A} =  Aj-^D- =  A0 D [ D l2 . . . Dj which gives (by
d, =  AJ)

(18) Aj =  DjDj- i  . . .D 2 D 1 for j =  1 , 2 , n.

6. Calculation of the matrices Fki and Âk. Having eliminated the matrix 
Âk in relations (13), we obtain the system of k ~  1 equations

(19) a / z  AJFI  =  At A[ (J =  1 ,2 , . . . ,  1 >.
i = 1

Let us apply the method of a successive elimination of the unknowns. 
First of equations (19) is multiplied left-hand sided successively by the 
coefficients i//lj =  — AjA[ {Ax А \ ) ~ 1 and added to the j-th (j =  2, 3, . . . ,  к — 1) 
equation. In these equations at Fkl a zero matrix will appear, whereas at 
Fki (i =  2, 3 , . . . ,  к — 1) the matrix Aj A 1 A[, respectively. The right-hand side 
will be of the form Aj A1 Ak (cf. notations (16)). Leaving now the first and 
second equation unchanged, we multiply the second equation left-hand sided 
by matrices ij/2j =  — AjA^ AJ(A2 Al A%)~1 (cf. property (W4)) add it to the 
j-th {j =  3, 4 , . . . ,  к — 1) equation. In the equations of numbers j  =  3 ,4 , . . .  
. . . , k — 1 a zero matrix will appear at Fkl, whereas, at Fki the matrix 
AjA2 A[  (i , j  =  3 ,4 , . . . ,  к — 1), respectively. Proceeding further in an analo­
gous way the equation system

k - i - j
X Aj A j - 1 Aj+iFlu+i) = AjAj - 1Al  for j  =  1 ,2 , . . . ,  к -  1,

i = 0

will be obtained, and hence
k - l - j

X k̂(j + i) Aj+i Aj-  ̂Aj = Ak Aj - 1 A j .
i = 0

So the solution is

(20)

F = [ AkDk - i Dk- 2  ••• Di + l Ai- l Af  {AiAi-i  A])~l for i =  1 ,2 , . . . ,  k - 2 ,  
\ ^ k ^ k - 2 ^ k - l ( ^ k - l ^ k - 2 ^ k - l )  1 f ° r  i = k ~  1 .

It results from (13), (17) and (20) that
fc-l k- 2

^ к ^ к ^  Fk(A( AkDk—i ^  Fki Ai
i = 1 i = 1

k-3
=  Ak^k-i D k- 2 — ^  Fki Aj =  ... =  AkD k- 1 Dk- 2 ... D 2 D±,

Àk — AkAk~i

and finally,

(21) for к = 2, 3, . . . ,  n.
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7. The matrix Bk. Making use of formulae (6)-(8), (16)—(18), and (21), 
the matrix Ëk can be expressed by means of the matrices Aj and Bj. 

First notice that from (21) and (W^ we get

(22)

Write

ÀkA[ — AkAk_ 1 Ak — AkAk (k constant = 2 ,3 , . . .

(23) \ j  — D k- ! Dk _ 2 ••• D j + 1 D j - 1 ••• D2 Dl Aj(AjAj ^ A j r 1

for j  =  1 , 2 , . . . ,  /с— 1 , к =

These are rxrnj  matrices which do not contain the factor Dj. Then
k -  1

(24) Bk = Bk- A k X 2 kjBj.
j= i

8. Theorem 2. If assumption (Zj) is fulfilled and the matrices Ajy Bj 
are of the form (21) and (24), respectively, then for every k =  l , 2 , . . . , n  
the sum of the form (6), where V{j) are of the form (7), (8) is the (unique) 
solution of the problem Pk.

Indeed, the solution Vk can be reduced to the form (11). The proof 
is by induction (see also formula (16')).

Remark. In another form (see (22)) formula (16) is

Aj =  Aj_x- L j A j  ( / = 1 , 2 , . . .,«),

where Â x =  A x and Lj =  Â f(A jÂ j )~ l . Thus we have (see (7)) Vij) =  LjBj 
(Si = Si)-

Starting to calculate the k-th stage (k =  2, 3, . . . ,  n) we have already: 
Lk_ l5 Âk^l , Bk^l , Ak _ 2 and VU) for j  = 1 ,2 , . . . ,  к — 1. So we must calculate

1 d fc_1 = dk_2 — Lk-i  2 Âk =  АкАк_ 1, 3 Bk = Bk — Ак £  F<J),

4 АкДк, 5 (AkÂk) \  6 Lk = Âk (AkÂk) 1, 7 V{k) = LkBk.

9. Example. The given equations system (5) is:

2vx + 3r2 + 11 — 0
iq ~\~V-j — 110 =  0

stage 1

v 2 — 2 v 3 — 2 v a  +  3 = 0 stage 2

— 6u2 +  d5 +  5p7 — 542 =  0 
7p3 +  8p4 + i>6 +  104 = 0

stage 2
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Stage 1 (see (25)).

"2 3 |01 " -  1 Г
A, =  À, =

1 o | ° 2x4
1

mJ
, — B{ —

110

A t À '[
13 2 
2 2

(Ai AD
1

22”

2 - 2  
- 2  13

2 9 4
6 - 6 - 3

L i = O4 X 2
, F(1) =  11

0
 

•

- 2  13 6

Stage 2. Л2 =  [0 1 —2 —2 0i x3] ,  в

1--1
en11_

1
II ?

Г 9 - 6
^2x4

- 9  1

j 2 =  / - l 2* 2 =  ^ -

- 6  4 6

04x 2 22 • / 4*4 O4X1

- 9  6 Ol x 4 9

Â 2 =  A 2 A ! =  Yj- [ — 3 2 - 2 2  - 2 2  0 0 3],

& 2  ~  b 2 —A 2 v tl> =  [30]. а 2Л  =  [??], (4 2 ^ г ‘ =  [Ш .
JT _  г  L J_ _ ü  _ i l  A 0 1 1^2 — L 30 45 45 45 U U 30-1’

(F<2))r =  (L2 B2)t =  [ - 1  f  - f  - f  0 0 1].

Stage 3.

'0 - 6  0 0 1 0 5
, B3 =

542~
0 0 7 8 0 1 0 -1 0 4

A 2 A\ L 2 Â 2

A3 — A 3 Â2

1
45

1
15

18 - 1 2 - 3 - 3 0 0 - 1 8
- 1 2 8 2 2 0 0 12

- 3 2 23 - 2 2 0 0 3
- 3 2 - 2 2 23 0 0 3

0 0 0 0 45 0 0

0 0 0 0 0 45 0

- 1 8 12 3 3 0 0 18

' - 6 4 1 1 15 0 6'
- 1 5  10 - 5  10 0 15 15 -
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5 3 =  B3 - A 3 (V{l) +  V{2)) =
13"

6J

A*ÀZ =
"7 5" 1 ' 20 —5"
5 20 ’ (А зЛ 1 Г ' = ^ 3 - 5  7_

1

~69
- 9  6 9 - 6

- 1 5  10 - 8  13
60 - 1 5  9 
15 21 15

(F(3))r =  (L3 B3)T =  [ - 3  2 1 0 10 - 1  3].

Other applications and results will be given in papers [2] and [3].
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