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Connectedness of the hyperspace
of closed connected subsets

Absiract. Let X be a connected Hausdorff space and C(X) be its collection
of closed connected subsets with the Vietoris topology. An example is given to show
that O(X) is not necessarily connected. A sufficient condition is given to obtain
connected O (X). This condition implies that the “explosion point” example of Knaster
and Kuratowski has connected O (X).

It is known that if X is a connected T, space, then 2% (the hyper-
space of non-empty closed subsets of X) is connected. It is also known
that if X is a continuum (= compact connected T,), then C(X) is a con-
tinuum.

Let X be a space and C(X) be the colleetion of all non-empty closed
connected subsets of X. The Vietoris topology on C(X) is generated by
sets of the form <V,, ..., V>, where each V, is open in X and 4 <V, ..
ey Vo iff A e C(X), ANV, #@ for eachiand A < U {V;|i =1,...,0}
Denote the closure of 4 by A*. We will discuss when C(X) is connected
if X is connected. A counterexample will be given and some sufficient
conditions are provided to obtain econnected C(X).

A gpace X has property (1) provided there exists p € X such that
if peV and V is open in X, then there is a non-degenerate K € €(X) such
that K < V.

THEOREM 1. If X is a non-degenerate connected T, space and C(X)
is connecied, then X has property (1).

Proof. Suppose for each p € X, there exists an open set V, con-
taining p such that <V, = (V) nX, where X is the set of all singletons
in X. Then X = \J {<V,>|p € X} which is open in €(X). But X is closed
since X is 7',. This contradicts €(X) being connected.

' ExampLE A. Let X be Bing’s countable connected Hausdorff space
m [1]. Then X does not have property (1); hence C(X) is not connected.

ExaMpLE B. Let p be a point on the z-axis in Bing’s example and

adjoin an arc I to X with one endpoint of I equal to p. Then Xuo (I
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is closed and open in C(Xul). Furthermore, X UI has property (1) at
each point of I. '

A space X has property (2) provided that if K is a non-degenerate
proper closed connected subset of X and K = V open in X, then there
exists H € O(X) such that K <« H< V and K # H.

THEOREM 2. If X is connected T, and has properties (1) and (2), then
C(X) is connected.

Proof. Let 0(X) be separated by % and ¥. Since X is connected,
one can assume X € ¥ Let p be the point given by property (1). Then
{p} €¥" implies that there is an open set V such that {p}e<V) < 7"
Choose a non-degenerate K e C(X)and K < V. Let ¥ = {HeV |K c H}
and A < B iff A < B. Choose a maximal chain .# in ¢ and put M =
= (U.#)* € C(X).

Let M eV, ..., V,>. Then for each ¢, there exists M;e.# and
M,NV,; # Q. Since {M,} is a chain, then there is a largest M; which meet
each V,, i.e., M e¥™ =¥ Property (2) and the openness of ¥ imply
M =X. :

Let P e . Since X ¢ ¥ , then P is non-degencrate. Do the same con-
struction for P in %. One obtains X € # which is a contradiction.

COROLLARY 1. If X is T, and X = UK, and MK, # 9, where each
K, is a continuum, then C(X) is connected.

Proof. Let p € () K, and agsume X is non-degenerate, Then p € K,
for some non-dcgenerate continnum K,. We will show that X has prop-
erties (1) and (2). Let p € V open in X. Choose U open in K, such that
pelUc U< VnK,. Then the component of p in U* is a non-degen-
crate continuum contained in V.

L¢t € be a non-degenerate proper closed connected subset of X and
C < U open in X. Assume p € C. Since C # X, there exists A, which is
not contained in C. Let CnK,c Ve V' < UnK,, where V is open
in K,. The component D of p in V* meets the boundary of V relative
to K,. Hence CuUD is the required closed connected subset contained
in U.

Suppose p ¢ C. Choose any g e CNA, and do the same construction
as in the previous paragraph.

COROLLARY 2. If X is locally connected T, and connected, then C(X)
is conmected.

Proof. To prove propertics (1) and (2), let C e C(X), and ¢ # X
and C < W open in X. Since C is not open, there exists q € ¢ which is
not an interior point of C. Choose a connected open set U such that
ge Ugc U< W. Then CuU” is the required closed connected set.

Exavpre C. The converse of Theorem 2 is false. If n is a positive
integer, let. L, = {(t,t/n)|0 <t<1} and L = JL,. Put U = {(x, 0)|
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0<z<land z#1/2}and X = LUU. Since M = {K e 0(X)|(0,0) e K}
is connected (same proof as Theorem 2) and each C(L,) meets M at {(0, 0)},
then Mu (| JC(L,)) is conneeted. It suffices to show it is dense in C(X).

Let K e C(X)and (0,0)¢ K. Then K < L,or K < U. Assume K < U.
Then K = | JK;, where {K,} is an increasing sequence of compact connected
subsets of U. If K e(V,,..., V,>, then some K; e<V,,..., V,>. There
exists A e C(L,) such that 4 e€{(V,,..., V,>. Note that property (2)
fails at K = {(#,0)|} <> <1} .

~ ExaMpLE D. The “explosion point” example of Knaster and Kura-

towski (see [3], p. 22] will be shown to have properties (1) and (2). Let
C x {0} be the canonical Cantor set on the x-axis and Y the union of
all line segments L (x) from (z, 0) to ¢ = (4, }). Let C = Pu@, where P
consists of endpoints and @ its complement in C. Then the explosion
point example X is the set of all (z, t) € L(z), where ¢ is rational iff z e P
and ¢ is irrational itf x € . Note that 4* and B(A) mean closure and
boundary of 4 in Y (not in X).

It is easy to see that property (1) is satisfied at @ (and nowhere else).
The following two lemmas show X has property (2).

LevMA 1. If He?2 a eH, Hc U which is open in Y, then
P = {zeC|L@z)nH*NB(U) = O} is of first category in C.

Proof. Let {r;|¢ =1,2,...} be all the rationals in [0, }) and G;
= {(b,7,) e H*'nB(U)|(b,7;) € L(x) for some » e @}.

Let 2 € FnQ and g e L(®)nH*nB(U). Since g ¢ U, then g ¢ H. But
o = H*NnX yields g ¢ X. The y-coordinate of g is rational which gives
us g e G; for some 4.

Note that G € H*nB(U)n{(b, r)|(b,r;) e Y}. But if qeG*, then
9 ¢ X since H = XnH". S0 q e L(z) for some z € Q. Let F; be the image
of the (stereographic) projection of @; down the line segiments into the
Cantor set. F, is nowhere dense since F;nP = @. Moreover, F < ([ JF;)UP.

bemMmA 2. If H € C(X) and H is non-degenerate and proper, H = U
open in Y, then there exists LeC(X) and H< L< U and H # L.

Proof. We know @ ¢ H and by the previous lemma, one can get
# e C such that L(z)nH*NB(U) = 0. Note that L(x)nH* is an arc.
In fact, we can choose # such that {a} # L(z)nH* = L(x). Since a
€ L{(x)nH* which is connected and (L(#)nH*)NnB(U) =@, then L(z)n
NH* = U. Choose (e,1) € (L(m)NX)\H* such that {(f,s)eL(x)|s>t}
S U. Choose M e C(X) such that (e,#)e M and M < U. Now L = HuM
is the appropriate connected set in X since o e M and (e,t) € M\H.

Remark. In contrast to hyperspaces of continua: (a) there are
Mmaximal chains in C¢(X) which are not connected, (b) {a} is a cutpoint
of ¢(.X).
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