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STANISEAW FUDALI (Wroclaw)

On the osculating %-plane of a curve
in an n-dimensional Euclidean space

In considering the general problem to find possibly weak analytic
conditions for the existence of osculating k-dimensional surface M of
a p-dimensional surface L in an n-dimensional Euclidean space, I res-
tricted myself to the case where p = 1 and M is a k-sphere or a k-plane.
The results for the case of a k-sphere are in [1]. In this note I present
some results of this kind for M being a k-plane.

»
Let L(t) = ) &'(t)k; be the radius vector of a curve L in B", where

. i=1
#': t—>2(t) are C*~! functions, k; are the unit vectors and a coordinate

system in E™ is chosen so that at some point Py(f,) of L the derivatives
(e—1)

i(to), i(t.,), ...y L (t,) are linearly independent. Then, by a proper choice
of the vectors k; we may achieve that the determinant

(k=1) =1y
@ VTR L @ ()

e

v

BUTRRE(LY) L. Z™(t,)

does not vanish at Py(f,). In the sequel we assume also that P, is not
a point of inflection of order k—1 of L. It means that exists such neigh-
bourhood of P,, that k points of it, chosen on the curve L, do not lie in
any (k—1)-dimensional plane.

A k-plane in E" is uniquely determined by any k—h -1 of its points
and % directions, where k is any integer not exceeding 1(k +1); the points
should not lie in any (k—h—1)-dimensional plane. In the sequel we
shall consider only k-planes determined either by %-+1 points and 0
directions or by % points and 1 direction; the points will always belong
to the given curve L and the direction will be tangent to L at one of chosen
points.

Let the points P,(t,), Pa(ta), ..., Pr_pi1(t_pyy) of L be chosen so
that P, lies between P,_, and P,_, for each re {3,4,...,k—h+1}, and
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316 8. Fudali

any tangent line let be tangent at P,, whenever it is considered; the
sequence of these points will be called regular and denoted RSP (k— h -+1).
By *n*(P,) we mean the k-plane through the points P, (s e {1,2,..., k+1})
when % = 0, and the %-plane through the points P, (se{l,2,...,%})
and through the tangent line at P, when b = 1.

DErFINITION. Let RSP (k—h-+1) converge to P, along L; the limit
k-plane of the sequence {*z*(P%)}, whenever it exists, will be called the
osculating k-plane of the curve L at P, and will be denoted by ’z* ~
(ref{l,2,3}, he{0,1}):

Pk = lim
. RSP(k—h+1)>P;

hﬂk(P )9
whereby we write

(a) “a* it P, belongs to none of the arcs PP,

(b) ¥ if P, belongs to each of the arcs P2PY and is different from
P? and P; for each aeN, _

(¢) *a* it P, is one of P§ or P; in each sequence of the family
RSP (k—h+1), a € V.

Choose the points Py, Py, ..., P,_;,, on L in some neighbourhood
of Py € I and let P;_,, be the origin of each vector PPy ., (ie{l,2,...
...y k—h}). Then a k-plane generated by these vectors, and by tangent
line at P, (when h = 1), is described by the system of #»—k equations

(1) 2 (ws_mz—h+l)hxn—k+l...n = 0
for each s e {1,2,...,n—k}, where we write j instead of #'(t,),

(2)

hxr+l...nsn—k+l...r—-1

+1 r+1 r+1 r+1 7+1 7+ 1
et —at >R — X T & @ .
k—h+1 L k—ht1 (1—h) & BHL L g
bh— g1 ey —tn b — Yt
n T V(1 '3 7 n
Ty — Tg_pi1 Ly — Pp_pt1 By — Dp iy -n
e (B —h) -+ hal
2l P beei — Yo pg b —thrr
N
S ] S S = S S
By — Lp_p L1 Pp—p1 &
41 S S S AR Y (1—h) % Tt1 R
ek ey —te_np1 Al TR
n—k+1 n—k+4+1 ot—k+1 n—k4-1 n—k+1 n—k+1
By T Bp_ppr o By & pp Ly ~Tp1 .
(1—h) + ha,
tr - tk—hv-l-l tk-l - tk—h+1 tk - tk+1
............ . . . - "' . - . - . - . - . - . . » <» ’ . . . 3 . . [}
-1 71 r—1 r—1 r—1 r—1
By — W By — Pp_phi1 @y, k1 .
‘ * ML (L—B) L !
tl“tk—h+1 (8 1 tk—h—H k7 Y41

for ¥ e fn—k+1,...,n} and >  denotes the summation over all cyclic
permutations of the sequence of superse ripts.s, n—k-+1, n—k+2,..., n.



Osculating k-plane of a curve 317

Each equation of (1) describes any hyperplane H,. A normal unit
vector of such hyperplane is
o hxn—k+l...n hxn—k+2...ns
3 o = <0,

ey 0 —, 0,...,0 —_—,. ..
Tli—’ ]/Zs(hxil...ik g 1 st(hxil...ik)z !
n—k

hxsn—k+l...n~1 >
very TS )9
- ‘/Zs(hle...tk)z

where Y, denotes the summation over all sequences of superseripts 4, ..., 4,
which are elements of the set {s,n—k-+1, ..., n}. By this we mean that
the reare formed all eyclic permutations of the sequence of s, n — k41, ..., n,
in each of that permutation the first term is omited and the rest of titem
18 denoted by 4y, ..., 9.

If the points Py, Py, ..., P,_,,, converge to P, along L, all com-
ponents of H, become indeferminate forms of the type 0/0. To avoid of
it we must transform each component in (3). Do it as follows:

1° Write (X/[t;_5,%;] in (3) instead of (! —af_,, ) /(t; —t_pyy) and
the k-th column of X7+%.-msn—ktl.r=1 quhtract from the ¢-th column
for each i€ {1,2,..., k—1}; obtained difference divide by ¥ —{,. Then,
in the ¢-th column of the newly obtained determinant, we have the ex-
pression of the form

X (1 til —1X e

t .
,’E]/ a Xt tt]  (when B =0)

or .
0 v . j
—lx—[;kt'—}ﬂ L1X14t]  (when h = 1) for each je{l,2,...,n}.

i 'k )
This expression is called a finite difference of order 2 and of kind 0 or is
called a finite difference of order 1L and of kind 1, accordingly.
2° In the newly obtained determinant subtract the (k —1)-th column
from its ¢-th column for each i € {1, 2, ..., k¥ —2} and obtained difference
divide by t;—1,_,. Then, in the i-th column of the obtained determinant,
we have the finite difference of order 3 —h and of kind A:

h vy hvi .
_p X[t b — 2 X0 OO P I .
p) — - - — . .
ARl B Bk ek Bl = 3—211] (le—ngr - teatsl

ti_tk—l
for h e {0,1}, and so on. In the last step of such transformasion sub-
tract the second colummn from the first one of the last obtained deter-
minant and obtained difference divide by t,—1,. Then in the first column
we obtain the finite difference of order k—h and of kind h:

ki i } )
f:h—lX] [eenpr -+ B3ty “k—h—’fX] [bh—ngr .- tats] a8, -
t t = k—hl [tk—h+l tstztl]-
1~ Uy
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For such finite difference we have
LemMA 1. Let o’: t—a'(t) be a C**"! function (he {0,1}) in an
interval {a,b) and let t,,...,t,_,_, be a reqular sequence of potnis in (&, b).
Then for every point t, € (t,,,t_;,_,) (me{—1, 0}, letting t_, = a, 1, = b)
with ¢, =1, (pe{l,2,...,k—h—2}) there ewists a point wu € (ty, _,)
such that
> dy t ]=——£—f$%un (g<k—h—2)
q k—h—1 *** Ykmg—n-1 (gt h)! VIS .
(It is Theorem 1 in [2].)
LeMMA 2. Let o': t—>a'(8) be a C*! function in an interval {a,b);

(k)
let a finite derivative o’ (l,) = Bl ewist at a point ty € (a, by and a, b, ty, by, ...

cvey te_ney (B e {0, 1}) be a reqular sequence of points in the interval {a, b).
Then there exists the finite limit

) , 1
lim X[, , .. .1,ba] = 1 Bi,
RSP(l~h+1)>4, !
ty&(a,b)

al the point t,. (It is Theorem 2 in [2].)
LeEMMA 3. Let #': t—>a'(t) be a C*' function in an interval (A, B)
> {a,b) and let exist the finite limit
(k—l)j (k—l)j
lim % @~ 27

a,b—4, a—b

G

at such point t, € (A, B) thatt, ¢ (&, b); moreover, let the points a, b, {1, ts, ...
veesbi_n_y Chosen in {a, b> form a regular sequence of points (h e {0, 1}).
Then there ewists the finite limit

. 1 .

liIn k_;:XJ [tk—k—l cae tlba] = _" Ci—

RSP(k—h+ 1)1y k!
tp#<a,b)

at the point t,. (It is Theorem 3 in [2].)
Recall here one more notion,

DEFINITION. If #: t—a7(1) is the C*~' function in a closed interval
{a,b), then by the right-hand side (left-hand sidv& k-th derivative of
the function 2’ at & (b) we mean

(k-1) (k1)
(k+), x Ha+u)— z’(a
x '(a) = lim ( ) ,_,(_)
w0 [/
u>0

(4) (k-1), (k—-1)
((’H pibtu)— @ ’<b>)

@ 7(b) = lim -~
u—0 U
u<0
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Then we have

LEMMA 4. Let /: t—>a2'(2) be a C*~" function in a closed interval <a b);
(k+) (k=)
let the finite right-hand side (loft-hand side) derivative x ' (a)= D, (' (b) =
Di_) ewist and let a,b,t,,%,, ..., 4_x_, (h € {0,1}) be a regular sequence
of points in the interval {a, b). Then there exists the finite limit

. 1,
lim X[t sy ... thba] = 77 Dy
RSP(k—h+1)—>a .
( lim k—ﬁXj [tk—h— tl ba] = - 'Dk—)
RSP(k—h+1)-b k!

at the point & {or b).

A proof of this Lemma is identical with the one of Theorem 2 in [2]
if we write the limit of (4) instead of
( ) @
b}
i & 0 =@ (t)
t—tg t—to
using there.
After the indicated above transformations of (2) we use Lemma 1

to the finite differences in a term for the components of vector H, and
(a+h)

1 . ,
Write(q—_*_T)‘— @ 7(¢}) instead of 2X7 [t _p4y ... tu_p_gpa]foreachge {1,2, ...

y k—h—1}. Any determinant in one of components of vector H, has
now the form (b) (see p. 320).
Assume now that P, belongs to the interior of each arc P"P" for

(k) n (k)
a € N and let the derivative L(t,) = > - k; exist at P, and be linearly
(k=1) je1

independent with L(to), L(to) .y Li(t,). Then we may choose a coordinate
(%)

system in E® so that the derivatives a(f,) = BJ are non-zero for each

je{l,2,...,n—k+1}. Converge with RSP(k—h-+1) to P, and apply

Lemma 2. Then, since L is of C*~!-class, we have the determinant
(k—1)

B Mt .. 8TH(L)  (A—R)ET(L)  4-hamH(t)

-------------------------------------

B} B Pl .. 86 (L—R)EM(E) 4+ ha"(t)
kb k=1
—I1B; - 2 *(ty) cee &°(ty) (L —R)2°(ty) + ha® (2,)

sm1 7!

(k-1)
B4l Tp MRt L aTR g (1R () + PR (,)

.....................................

Bt w Tty e &7 (A—R)ETTHE) +RETT(G)
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instead of that in (5). Among all determinants which have appeared in
(3), the determinant ~

—l) . . : )
B ‘o 7(t0) v @t (L=B)E () R (5)

.................................

B} x "™(ty) v M (2) (1 —h)aZ™(t,) + ha™(t,)

is non-zero, aceording to the remark about numbers B (je{1,2, ...
..., n—k+1}) and about the determinant V. This determinant - appears
in the denominator of each component of vectors H, and appears as the
nuinerator of the one such component. That means that there exists the
limit non-zero vector of a sequence of normal unit vectors H, of hyper-
plane for each s € {1, 2, ..., n —k}. It follows that there exists the limit
k-plane of a sequence of k-planes described by (1). This limit XA-plane,

by its definition, is the osculating k-plane 7*. Then we have
n

TurOREM 1. Let L(t) = Y @'(t)-k; be the radius vector of & curve L
=]l
in B, where o': t—>2'(1) are C* " -functions. Moreover, let Py be not a poin
of inflection of order k—1 of L. If there exist the derivatives L(ty), L(ty), ...
(%)
wovy L(ty) of L(1) and if they are linearly independent, then there exists the
osculating k-plane 'a® (he{0,1}) of L at the point P,.
Also it is true

THEOREM 2. Under the same hypothesis on the curve L and the point P,

as in Theorem 1, the osculating k-plane [n* (h € {0,1}) of L at the point
(k—1)

P, ewists provided there exist wvectors i(to), cooy L(ty) and vector C such
3

n
that C = > CL-k;, where
= (k1) (k=1)
. ita)— @ (b
C} = lim v a)— 2 ()

a,b—t, a—b

’

and all these wvectors are linearly imdependent.

The proof of this Theorem runs in the same way as the one of Theo-
rem 1, but here is exploited Lemma 3 instead of Lemma 2.
Using Lemma 4 instead of Lemma 2 in the proof of Theorem 1 we
€an prove
THEOREM 3. Under the same hypothesis on the curve L and the point
Py as in Theorem 1, the osculating k-plane = (h e {0, 1}) of L at the point
(k—1)

P exists provided there exist vectors L(to), veey Li(ty) and vector D such that
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[ R .
D = > Di:k;, where D is a one-side k-th derivative of & at the point P,
Joul ‘

and all these vectors are linearly independent.
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