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On the osculating fc-plane of a curve 
in an ю-dimensional Euclidean space

In considering the general problem to find possibly weak analytic 
conditions for the existence of osculating fc-dimensional surface M  of 
a p-dimensional surface L  in an ^-dimensional Euclidean space, I  res
tricted myself to the case where p — 1 and M  is a fc-sphere or a fc-plane. 
The results for the case of a ^-sphere are in [1 ]. In this note I  present
some results of this kind for M  being a fc-plane.

»
Let L(t) = £  be the radius vector of a curve L  in En, where

i=\
xj : t->x?(t) are Ck~l functions, kj are the unit vectors and a coordinate 
system in En is chosen so that at some point P 0(t0) of L  the derivatives 

(* -D
L(t0), L(t0), . . . , L  (<0) are linearly independent. Then, by a proper choice 
of the vectors kj we may achieve that the determinant

(*—1) (fc-1)
X n~k+2(t0) . .. a? n(t0)

Xn~ k+ 2(t0) . • • xn(h)

does not vanish a t P 0(<0). In the sequel we assume also that P 0 is not 
a point of inflection of order k — 1  of L.  I t  means that exists such neigh
bourhood of P 0, tha t к points of it, chosen on the curve L,  do not He in 
any (1c— 1 )-dimensional plane.

A ifc-plane in PP is uniquely determined by any k — h + 1  of its points 
and h directions, where h is any integer not exceeding %(k-f-1 ); the points 
should not lie in any (k — h — l)-dimensional plane. In the sequel we 
shall consider only fc-planes determined either by к + 1  points and 0 
directions or by к points and 1  direction; the points will always belong 
to the given curve L  and the direction will be tangent to L  at one of chosen 
points.

Let the points P x(tx)> P 2(̂ a)> •••> Pk-h+i(h-h+i) of I  be chosen so 
that Pr lies between P r_1 and P r_2 for each r e (3, 4, . . . ,  k — Л- fl}, and

6 — R oczn ik i PTM  P race  M at. X X.2
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any tangent line let be tangent a t P A, whenever it is considered.; the 
sequence of these points will be called regular and denoted ESP (ft — ft-j-1). 
By клк(Р8) we mean the ft-plane through the points Ps (s e {1, 2 , . . . ,  Jc +1}) 
when ft =  0, and the ft-plane through the points Ps (s e {1, 2 , . . . ,  1c}) 
and through the tangent line at Pk when Ji = 1.

D e f in it io n . Let ESP (ft — ft-fl) converge to P 0 along P ; the limit 
ft-plane of the sequence fVrfc(P“)}, whenever it exists, will be called the 
osculating Тс-plane of the curve L  at P 0 and will be denoted by клк 
( re  {1,2,3}, ft e {0 , 1 }):

пглк =  lim nnk{Pas),
■■ . RSP(fc-ft+l)-*P0

whereby we write
(a) клк if P 0 belongs to none of the arcs P?P£,
(b) клк if P 0 belongs to each of the arcs P"P£ and is different from 

P “ and PI  for each a e N,
(c) оЛк if P 0 is one of P? or P? in each sequence of the family

ESP"(ft —ft+1), a e N. ~ ■
Choose the points P lt P 2, . . . ,  P k_h+1 on L  in some neighbourhood 

of P 0 e P  and let Pk_h+1 be the origin of each vector P<P*L/l+1 (г e {1 , 2 , ... 
. . . ,  ft — ft}). Then a ft-plane generated by these vectors, and by tangent 
line a t Pk (when ft =  1 ), is described by the system of n — ft equations

(1) ' y V - ® U +,)*ir»-*+1- "  =  o

for each s e {1 , 2 , . . . ,  n — ft}, where we write x3P instead of xj {tp),

(2) hX r+1 . . . n s n —k + l . . . r —l

5Ï+1 X ■1
k - h + 1

rpf +1   rpr + 1
• "k —1 d/k - h + 1

U—tk —h+1 vk -  l
( 1  — f t )

nJ'+l
Jk f̂c+l

k —h+1 P - P +1
+  ft̂ .+ 1

4 ~  K - h + 1  . 4 - i ~ J/k ~ h + 1
(1 - f t )

4 ~ 4 +1
- f  Ь х%

i l  U - h + 1 P - l  ~ * P - f t + 1 P  —  P + 1

4 ~ 4 - 7 H - l
ŷ S
^ k - 1 “ ■ r f t - h + l

(1 - f t )
4 - 4 + 1

■ f  f t 4
i \ ~ t k - h + 1 P - 1 ~~' P - f t + l p  — P + i ,

Л+ l  ~ n - k + l  
•"l ■ •" k -h + i

,„п— f c + l  
^ k - 1

„ n - k + l
• " k - h + l

(1 - f t )

œ n - k + l 
л к  —

„ n - k + 1
•"k+1

t r - t k - h + 1 4-1 ~  Ч--Й+1 k+1

— Xur —1
k - h + i Jk ~ l Xr - 1

k —h+1

U - t k - h + 1 k - l ~  U - h + 1
( 1 - f t )

XÏ. ■x\
U - t

‘+! + ы \- \
Ze+1

for r e {n — f t- f l, n} and denotes the summation over all cyclic 
permutations of the sequence of superse ripts s, n — lc + 1 , n — ft -f 2 , „.., n.
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Each equation of (1) describes any hyperplane Hs. A normal unit 
vector of such hyperplane is

h  j f n —k + l . . . n

(3) я, =( 0.....0, 0, . . . ,  0 ,
7 t j p n —f t + 2 . . .  n s

n —k h ysra—fc+l...n— l

5 «Те?where denotes the summation over all sequences of superscripts i x, 
which are elements of the set {s, n — k + 1 , n}. By this we mean that
the reare formed all cyclic permutations of the sequence ots ,n — k + 1 , . . . ,n,  
in each of that permutation the first term is omited and the rest of them 
is denoted by ix, . . . ,  ik .

If the points P x, P 2, . . . ,  Pk_h+1 converge to P 0 along L , all com
ponents of IIs become indeterminate forms of the type 0 /0. To avoid of 
it we must transform each component in (3). Do it as follows:

1° Write \Xj [tk_h+iti\ in (3) instead of and
the ft-th cplumn of hx r+l---nsn~kJrl-"r~l subtract from the i -th column 
for each i e {1,2,  . . . ,  k — 1}; obtained difference divide by t{ — tk. Then, 
in the i-th column of the newly obtained determinant, we have the ex
pression of the form

; ^ [ w < ] - î ^ [ w * ]  «  о
—ti \Х* ih + J M  (when h = 0)

or
[t/chl df
tj t r. \XJ [tkt{] (when h = 1) for each j  e {1, 2 , . . . ,  n}.

This expression is called a finite difference of order 2 and of kind 0 or is 
called a finite difference of order 1  and of kind 1 , accordingly.

2° In the newly obtained determinant subtract the (k— l)-th  column 
from its г-th column for each i e {1 , 2 , . . . ,  k —2} and obtained difference 
divide by ti — tk_1. Then, in the г-th column of the obtained determinant, 
we have the finite difference of order 3 — к and of kind h:

2-hXj [tk- k+1 • • • tf\ —2_кХ* \tk_hJrl ... tk_{\ df
h - t i-hXj [bc-ft+i • • • tk-lti]

к - 1

for Tie  {0,1}, and so on. In the last step of such transformation sub
tract the second column from the first one of the last obtained deter
minant and obtained difference divide by tx — t2. Then in the first column 
we obtain the finite difference of order k — h and of kind h:

k-h-lX^ [tk_h+1 ... tstx] — k_h_\Xj [£fc_ ft+I 
1̂ ~ 2̂

£q£q] df ,
= k -h ^ lh -h  +1 •••
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For such finite difference we have
Lemma 1. Let orJ: t->x3(t) be a Ck+h~l function (h e {0,1}) in an 

interval (a, by and let , . . . ,  tk_h_i be a regular sequence of points in (a, b). 
Then for every point t8 e (tm, tk_h_1) (m e {—1, 0}, letting t_x =  a, t0 =  b) 
with t8 Ф tp (p e {1 , 2 , Tc — h — 2}) there exists a point u e { t m, t x_m) 
such that

X (v+h\
[ t f c - h - l  • ■ • h - q - h - l ]  —  ^  { q ^ h  — h —  2 ) .

(It is Theorem 1 in [2].)
Lemma 2. Let x3: t-^x 3̂ ) be a Ck~l function in an interval (a, &>; 

(fe)-let a finite derivative x3{tf) =  B{ exist at a point t0 e (a, b) and a, b, tt , tz, ... 
. . . ,  h - h - i  e {0 , 1 }) be a regular sequence of points in the interval <«, by.  
Then there exists the finite limit

lim k - h & i h - h - i  h b a ]  = T T  B t t
R S P (fc -A + l)-*<0 K  ’

t0e(a,b)

at the point f0. (It is Theorem 2 in [2].)
Lemma 3. Let xj : t -^xj (t) be a Ck~l function in an interval {A , B y  

3 (a , b y  and let exist the finite limit

lim
&9Ъ—

(*-1).
x 3{a)~ x 3{b)

a — b

at such point t0 e (A , By that t0 $ (a , by ; moreover, let the points a , b, tx, 1г, ... 
. . . ,  tk~h-i chosen in <a, by form a regular sequence of points (h e {0 , 1 }). 
Then there exists the finite limit

lim k_lXj [«*_*_! ... *xfta] =  ~  C{
R S P ( f c - A + X M o  K<0 *<«>*»>

at the point t0. (It is Theorem 3 in [2].)
Becall here one more notion.
D efinition . I f  xj : t-*x3(t) is the Ck~l function in a closed interval 

( a ,  b y ,  then by the right-hand side (left-hand side!) fc-th derivative of 
the function xj a t a (b)  we mean

(4 )

(fc+). 
x 3(a)

(fc-i) (fc-i)
x 3(a+ u)— x 3[a) 

= lim ----------------------------
te->0 Wtoo

<(k~)
x *(b)

( fc- i)

x 3{b + u)
=  lim -----------—-

M-*0 и«<0

(fc -1 )
— x 3{b)
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Then we have
Lemma 4. Let x?\ t-+cc?(t) be а Ck~' function in a closed interval <a, 6>;

<*+). (*-)
let the finite right-hcmd side (left-hand side) derivative x 3 (a) = D3k+(x*(b) =  
DJk_) exist and let a, b, t1} t2, . . . ,  tk_h_x (h e {0,1}) be a regular sequence 
of points in the interval <a, by. Then there exists the finite limit

lim k_hhX j ...<!&*] =  —  D3k+
R S P ( f c — Л + 1 ) - * »

( lim k-h^j [^-л- i • • • txba] =  —— L 3k_ \

at the point a (or b).
A proof of this Lemma is identical with the one of Theorem 2 in [2] 

if we write the limit of (4) instead of
(a). (3).

lim
t-*tn

x 3(t) — x 3(t0) 
t - U

using there.
After the indicated above transformations of (2) we use Lemma 1  

to the finite differences in a term for the components of vector H8 and 
1  <«+*). . .

write x 3 (Ci) instead of \X 3 {tk_h+1 ... tk_h_q+1]foT each g e { 1 ,2 ,...
(q + a) !

. . . ,  k — h —1}. Any determinant in one of components of vector H8 has
now the form (6) (see p. 320). .__ .

Assume now that P 0 belongs to the interior of each arc P “ P£ for
(k) n {k)

a e N  and let the derivative L(t0) = £  x3 • к  j  exist at P 0 and be linearly
( k - 1 )  i * =  1

independent with L(t0), L (t0) , . . . ,  L (t0). Then we may choose a coordinate
(*)

system in E4 so tha t the derivatives x3(t0) =  B3k are non-zero for each 
j  e {1 , 2 , . . . ,  n — &+1}. Converge with BSP(fc — 7&+1) to P 0 and apply 
Lemma 2. Then, since L  is of Cfc-1-class, we have the determinant

B ' t
(к-1)

®  r+1(h) ^ + , (*o) ( l - b ) d f +\ t 0) +  hxr+l(to)

Bnk
(k-1)

®  ” (<o) xn(t0) (l — h)xn(t0) +  ЛР*(<0)

P I  *
(*-l) /

æ 8(t0) x8(t0) (l — h)x8(t0) +  hx8(t0)

B%~k+1
(*—l)

®  " - * + 1(i„) . . . Æ "-s+ 1(i0) (1  -  h)xn~k+1 (t0) +  hxn~k+1 (<„)

Р Г 1
(Л -1 )

x r- 1 (<0) xr- l (tti) (1 — h)xr '(to) +  M r_ 1(«0)
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instead of that in (5). Among all determinants which have appealed in
(3), the determinant ;

x j (t0) ... xj {t0) {1 -Ъ)&Ц0) + hxj(t0)

Bn-k+2 {k~1]n-k+2{h) _  xn~k+2(t0) ( l - h ) æn- k+2(t0) + Mn~k+2(t0)

Bl  x n(t0) ... xn{tQ) {l — h)xn(t0) + hxn(t0)

is non-zero, according to the remark about numbers B{ (j e {1, 2 , ... 
. . . ,  n —fc+1}) and about the determinant V. This determinant appears 
in the denominator of each component of vectors Hs and appears as the 
numerator of the one such component. That means tha t there exists the 
limit non-zero vector of a sequence of normal unit vectors H8 of hyper
plane for each s e { l ,  2 , . .., n —Jc}. I t  follows that there exists the limit 
/с-plane of a sequence of fc-planes described by (1 ). This limit k-plane, 
by its definition, is the osculating ft-plane клк. Then we have

П
Theorem  1. Let L(t) =  £  xj (t) • Щ be the radius vector of a curve L

j-u
in IJn, where xj : t->xj (t) are Ck~l-functions. Moreover, let P 0 be not a poin

• M
of inflection of order Jc—1  of L. I f  there exist the derivatives L(t0), L(t0) , ...

(k)
. . . ,  L(t0) of L{t) and i f  they are linearly independent, then there exists the 
osculating к-plane knk (йе{0,1}) of L  at the point P 0.

Also it is true
Theorem  2 . Under the same hypothesis on the curve L  and the point P 0

as in Theorem 1, the osculating к-plane \л к (h e {0,1}) of L  at the point
(f c- i)

P 0 exists provided there exist vectors L{t0), . . . ,  L(t0) and vector C such

that C = J? C{ • k j , where
j = i

c i  - lim
a,b-+tQ

( k - l )  ( к - 1)
x 3(a)~ x j (b)

a — b

t

and all these vectors are linearly independent.
The proof of this Theorem runs in the same way as the one of Theo

rem 1 , but here is exploited Lemma 3 instead of Lemma 2.
Using Lemma 4 instead of Lemma 2 in the proof of Theorem 1 we 

can prove
Theorem  3. Under the same hypothesis on the curve L  and the point

P 0 as in Theorem 1 , the osculating к-plane клк (h e {0 , 1 }) of L  at the point
(*-1)

P 0 exists provided there exist vectors L(t0), . . . ,  L(t0) and vector D such that
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D = £  Di ' k j ,  where B Jk is a one-side k-th derivative of я? at the point P 0,
/—i

and all these vectors are linearly independent.
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