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On the osculating fc-plane of a curve 
in an ю-dimensional Euclidean space

In considering the general problem to find possibly weak analytic 
conditions for the existence of osculating fc-dimensional surface M  of 
a p-dimensional surface L  in an ^-dimensional Euclidean space, I  res­
tricted myself to the case where p — 1 and M  is a fc-sphere or a fc-plane. 
The results for the case of a ^-sphere are in [1 ]. In this note I  present
some results of this kind for M  being a fc-plane.

»
Let L(t) = £  be the radius vector of a curve L  in En, where

i=\
xj : t->x?(t) are Ck~l functions, kj are the unit vectors and a coordinate 
system in En is chosen so that at some point P 0(t0) of L  the derivatives 

(* -D
L(t0), L(t0), . . . , L  (<0) are linearly independent. Then, by a proper choice 
of the vectors kj we may achieve that the determinant

(*—1) (fc-1)
X n~k+2(t0) . .. a? n(t0)

Xn~ k+ 2(t0) . • • xn(h)

does not vanish a t P 0(<0). In the sequel we assume also that P 0 is not 
a point of inflection of order k — 1  of L.  I t  means that exists such neigh­
bourhood of P 0, tha t к points of it, chosen on the curve L,  do not He in 
any (1c— 1 )-dimensional plane.

A ifc-plane in PP is uniquely determined by any k — h + 1  of its points 
and h directions, where h is any integer not exceeding %(k-f-1 ); the points 
should not lie in any (k — h — l)-dimensional plane. In the sequel we 
shall consider only fc-planes determined either by к + 1  points and 0 
directions or by к points and 1  direction; the points will always belong 
to the given curve L  and the direction will be tangent to L  at one of chosen 
points.

Let the points P x(tx)> P 2(̂ a)> •••> Pk-h+i(h-h+i) of I  be chosen so 
that Pr lies between P r_1 and P r_2 for each r e (3, 4, . . . ,  k — Л- fl}, and

6 — R oczn ik i PTM  P race  M at. X X.2
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any tangent line let be tangent a t P A, whenever it is considered.; the 
sequence of these points will be called regular and denoted ESP (ft — ft-j-1). 
By клк(Р8) we mean the ft-plane through the points Ps (s e {1, 2 , . . . ,  Jc +1}) 
when ft =  0, and the ft-plane through the points Ps (s e {1, 2 , . . . ,  1c}) 
and through the tangent line at Pk when Ji = 1.

D e f in it io n . Let ESP (ft — ft-fl) converge to P 0 along P ; the limit 
ft-plane of the sequence fVrfc(P“)}, whenever it exists, will be called the 
osculating Тс-plane of the curve L  at P 0 and will be denoted by клк 
( re  {1,2,3}, ft e {0 , 1 }):

пглк =  lim nnk{Pas),
■■ . RSP(fc-ft+l)-*P0

whereby we write
(a) клк if P 0 belongs to none of the arcs P?P£,
(b) клк if P 0 belongs to each of the arcs P"P£ and is different from 

P “ and PI  for each a e N,
(c) оЛк if P 0 is one of P? or P? in each sequence of the family

ESP"(ft —ft+1), a e N. ~ ■
Choose the points P lt P 2, . . . ,  P k_h+1 on L  in some neighbourhood 

of P 0 e P  and let Pk_h+1 be the origin of each vector P<P*L/l+1 (г e {1 , 2 , ... 
. . . ,  ft — ft}). Then a ft-plane generated by these vectors, and by tangent 
line a t Pk (when ft =  1 ), is described by the system of n — ft equations

(1) ' y V - ® U +,)*ir»-*+1- "  =  o

for each s e {1 , 2 , . . . ,  n — ft}, where we write x3P instead of xj {tp),

(2) hX r+1 . . . n s n —k + l . . . r —l

5Ï+1 X ■1
k - h + 1

rpf +1   rpr + 1
• "k —1 d/k - h + 1

U—tk —h+1 vk -  l
( 1  — f t )

nJ'+l
Jk f̂c+l

k —h+1 P - P +1
+  ft̂ .+ 1

4 ~  K - h + 1  . 4 - i ~ J/k ~ h + 1
(1 - f t )

4 ~ 4 +1
- f  Ь х%

i l  U - h + 1 P - l  ~ * P - f t + 1 P  —  P + 1

4 ~ 4 - 7 H - l
ŷ S
^ k - 1 “ ■ r f t - h + l

(1 - f t )
4 - 4 + 1

■ f  f t 4
i \ ~ t k - h + 1 P - 1 ~~' P - f t + l p  — P + i ,

Л+ l  ~ n - k + l  
•"l ■ •" k -h + i

,„п— f c + l  
^ k - 1

„ n - k + l
• " k - h + l

(1 - f t )

œ n - k + l 
л к  —

„ n - k + 1
•"k+1

t r - t k - h + 1 4-1 ~  Ч--Й+1 k+1

— Xur —1
k - h + i Jk ~ l Xr - 1

k —h+1

U - t k - h + 1 k - l ~  U - h + 1
( 1 - f t )

XÏ. ■x\
U - t

‘+! + ы \- \
Ze+1

for r e {n — f t- f l, n} and denotes the summation over all cyclic 
permutations of the sequence of superse ripts s, n — lc + 1 , n — ft -f 2 , „.., n.
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Each equation of (1) describes any hyperplane Hs. A normal unit 
vector of such hyperplane is

h  j f n —k + l . . . n

(3) я, =( 0.....0, 0, . . . ,  0 ,
7 t j p n —f t + 2 . . .  n s

n —k h ysra—fc+l...n— l

5 «Те?where denotes the summation over all sequences of superscripts i x, 
which are elements of the set {s, n — k + 1 , n}. By this we mean that
the reare formed all cyclic permutations of the sequence ots ,n — k + 1 , . . . ,n,  
in each of that permutation the first term is omited and the rest of them 
is denoted by ix, . . . ,  ik .

If the points P x, P 2, . . . ,  Pk_h+1 converge to P 0 along L , all com­
ponents of IIs become indeterminate forms of the type 0 /0. To avoid of 
it we must transform each component in (3). Do it as follows:

1° Write \Xj [tk_h+iti\ in (3) instead of and
the ft-th cplumn of hx r+l---nsn~kJrl-"r~l subtract from the i -th column 
for each i e {1,2,  . . . ,  k — 1}; obtained difference divide by t{ — tk. Then, 
in the i-th column of the newly obtained determinant, we have the ex­
pression of the form

; ^ [ w < ] - î ^ [ w * ]  «  о
—ti \Х* ih + J M  (when h = 0)

or
[t/chl df
tj t r. \XJ [tkt{] (when h = 1) for each j  e {1, 2 , . . . ,  n}.

This expression is called a finite difference of order 2 and of kind 0 or is 
called a finite difference of order 1  and of kind 1 , accordingly.

2° In the newly obtained determinant subtract the (k— l)-th  column 
from its г-th column for each i e {1 , 2 , . . . ,  k —2} and obtained difference 
divide by ti — tk_1. Then, in the г-th column of the obtained determinant, 
we have the finite difference of order 3 — к and of kind h:

2-hXj [tk- k+1 • • • tf\ —2_кХ* \tk_hJrl ... tk_{\ df
h - t i-hXj [bc-ft+i • • • tk-lti]

к - 1

for Tie  {0,1}, and so on. In the last step of such transformation sub­
tract the second column from the first one of the last obtained deter­
minant and obtained difference divide by tx — t2. Then in the first column 
we obtain the finite difference of order k — h and of kind h:

k-h-lX^ [tk_h+1 ... tstx] — k_h_\Xj [£fc_ ft+I 
1̂ ~ 2̂

£q£q] df ,
= k -h ^ lh -h  +1 •••
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For such finite difference we have
Lemma 1. Let orJ: t->x3(t) be a Ck+h~l function (h e {0,1}) in an 

interval (a, by and let , . . . ,  tk_h_i be a regular sequence of points in (a, b). 
Then for every point t8 e (tm, tk_h_1) (m e {—1, 0}, letting t_x =  a, t0 =  b) 
with t8 Ф tp (p e {1 , 2 , Tc — h — 2}) there exists a point u e { t m, t x_m) 
such that

X (v+h\
[ t f c - h - l  • ■ • h - q - h - l ]  —  ^  { q ^ h  — h —  2 ) .

(It is Theorem 1 in [2].)
Lemma 2. Let x3: t-^x 3̂ ) be a Ck~l function in an interval (a, &>; 

(fe)-let a finite derivative x3{tf) =  B{ exist at a point t0 e (a, b) and a, b, tt , tz, ... 
. . . ,  h - h - i  e {0 , 1 }) be a regular sequence of points in the interval <«, by.  
Then there exists the finite limit

lim k - h & i h - h - i  h b a ]  = T T  B t t
R S P (fc -A + l)-*<0 K  ’

t0e(a,b)

at the point f0. (It is Theorem 2 in [2].)
Lemma 3. Let xj : t -^xj (t) be a Ck~l function in an interval {A , B y  

3 (a , b y  and let exist the finite limit

lim
&9Ъ—

(*-1).
x 3{a)~ x 3{b)

a — b

at such point t0 e (A , By that t0 $ (a , by ; moreover, let the points a , b, tx, 1г, ... 
. . . ,  tk~h-i chosen in <a, by form a regular sequence of points (h e {0 , 1 }). 
Then there exists the finite limit

lim k_lXj [«*_*_! ... *xfta] =  ~  C{
R S P ( f c - A + X M o  K<0 *<«>*»>

at the point t0. (It is Theorem 3 in [2].)
Becall here one more notion.
D efinition . I f  xj : t-*x3(t) is the Ck~l function in a closed interval 

( a ,  b y ,  then by the right-hand side (left-hand side!) fc-th derivative of 
the function xj a t a (b)  we mean

(4 )

(fc+). 
x 3(a)

(fc-i) (fc-i)
x 3(a+ u)— x 3[a) 

= lim ----------------------------
te->0 Wtoo

<(k~)
x *(b)

( fc- i)

x 3{b + u)
=  lim -----------—-

M-*0 и«<0

(fc -1 )
— x 3{b)
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Then we have
Lemma 4. Let x?\ t-+cc?(t) be а Ck~' function in a closed interval <a, 6>;

<*+). (*-)
let the finite right-hcmd side (left-hand side) derivative x 3 (a) = D3k+(x*(b) =  
DJk_) exist and let a, b, t1} t2, . . . ,  tk_h_x (h e {0,1}) be a regular sequence 
of points in the interval <a, by. Then there exists the finite limit

lim k_hhX j ...<!&*] =  —  D3k+
R S P ( f c — Л + 1 ) - * »

( lim k-h^j [^-л- i • • • txba] =  —— L 3k_ \

at the point a (or b).
A proof of this Lemma is identical with the one of Theorem 2 in [2] 

if we write the limit of (4) instead of
(a). (3).

lim
t-*tn

x 3(t) — x 3(t0) 
t - U

using there.
After the indicated above transformations of (2) we use Lemma 1  

to the finite differences in a term for the components of vector H8 and 
1  <«+*). . .

write x 3 (Ci) instead of \X 3 {tk_h+1 ... tk_h_q+1]foT each g e { 1 ,2 ,...
(q + a) !

. . . ,  k — h —1}. Any determinant in one of components of vector H8 has
now the form (6) (see p. 320). .__ .

Assume now that P 0 belongs to the interior of each arc P “ P£ for
(k) n {k)

a e N  and let the derivative L(t0) = £  x3 • к  j  exist at P 0 and be linearly
( k - 1 )  i * =  1

independent with L(t0), L (t0) , . . . ,  L (t0). Then we may choose a coordinate
(*)

system in E4 so tha t the derivatives x3(t0) =  B3k are non-zero for each 
j  e {1 , 2 , . . . ,  n — &+1}. Converge with BSP(fc — 7&+1) to P 0 and apply 
Lemma 2. Then, since L  is of Cfc-1-class, we have the determinant

B ' t
(к-1)

®  r+1(h) ^ + , (*o) ( l - b ) d f +\ t 0) +  hxr+l(to)

Bnk
(k-1)

®  ” (<o) xn(t0) (l — h)xn(t0) +  ЛР*(<0)

P I  *
(*-l) /

æ 8(t0) x8(t0) (l — h)x8(t0) +  hx8(t0)

B%~k+1
(*—l)

®  " - * + 1(i„) . . . Æ "-s+ 1(i0) (1  -  h)xn~k+1 (t0) +  hxn~k+1 (<„)

Р Г 1
(Л -1 )

x r- 1 (<0) xr- l (tti) (1 — h)xr '(to) +  M r_ 1(«0)
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instead of that in (5). Among all determinants which have appealed in
(3), the determinant ;

x j (t0) ... xj {t0) {1 -Ъ)&Ц0) + hxj(t0)

Bn-k+2 {k~1]n-k+2{h) _  xn~k+2(t0) ( l - h ) æn- k+2(t0) + Mn~k+2(t0)

Bl  x n(t0) ... xn{tQ) {l — h)xn(t0) + hxn(t0)

is non-zero, according to the remark about numbers B{ (j e {1, 2 , ... 
. . . ,  n —fc+1}) and about the determinant V. This determinant appears 
in the denominator of each component of vectors Hs and appears as the 
numerator of the one such component. That means tha t there exists the 
limit non-zero vector of a sequence of normal unit vectors H8 of hyper­
plane for each s e { l ,  2 , . .., n —Jc}. I t  follows that there exists the limit 
/с-plane of a sequence of fc-planes described by (1 ). This limit k-plane, 
by its definition, is the osculating ft-plane клк. Then we have

П
Theorem  1. Let L(t) =  £  xj (t) • Щ be the radius vector of a curve L

j-u
in IJn, where xj : t->xj (t) are Ck~l-functions. Moreover, let P 0 be not a poin

• M
of inflection of order Jc—1  of L. I f  there exist the derivatives L(t0), L(t0) , ...

(k)
. . . ,  L(t0) of L{t) and i f  they are linearly independent, then there exists the 
osculating к-plane knk (йе{0,1}) of L  at the point P 0.

Also it is true
Theorem  2 . Under the same hypothesis on the curve L  and the point P 0

as in Theorem 1, the osculating к-plane \л к (h e {0,1}) of L  at the point
(f c- i)

P 0 exists provided there exist vectors L{t0), . . . ,  L(t0) and vector C such

that C = J? C{ • k j , where
j = i

c i  - lim
a,b-+tQ

( k - l )  ( к - 1)
x 3(a)~ x j (b)

a — b

t

and all these vectors are linearly independent.
The proof of this Theorem runs in the same way as the one of Theo­

rem 1 , but here is exploited Lemma 3 instead of Lemma 2.
Using Lemma 4 instead of Lemma 2 in the proof of Theorem 1 we 

can prove
Theorem  3. Under the same hypothesis on the curve L  and the point

P 0 as in Theorem 1 , the osculating к-plane клк (h e {0 , 1 }) of L  at the point
(*-1)

P 0 exists provided there exist vectors L(t0), . . . ,  L(t0) and vector D such that
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D = £  Di ' k j ,  where B Jk is a one-side k-th derivative of я? at the point P 0,
/—i

and all these vectors are linearly independent.
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