Almost-bounded sets and some functions

1. Introduction. In 1973, P. Th. Lambrinos [2] introduced the concept of bounded sets in a topological space. Quite recently, in [3] and [4], he has also defined almost-bounded sets and nearly-bounded sets as generalizations of bounded sets and investigated their properties. The relations among these boundedness concepts are similar to those among compactness, almost-compactness and near-compactness. The main purpose of this note is to show the following two results: 1) The θ-continuous image of an almost-bounded set is almost-bounded; 2) The inverse image of an almost-bounded set under an almost-closed open surjection (not necessarily continuous) with nearly-bounded point inverses is almost-bounded.

Throughout the present note X and Y will always denote topological spaces on which no separation axioms are assumed. Let A be a subset of a topological space X. The closure of A in X and the interior of A in X are denoted by $\text{Cl}_X(A)$ and $\text{Int}_X(A)$ respectively. A subset A of X is said to be regularly open if $\text{Int}_X(\text{Cl}_X(A)) = A$, and regularly closed if $\text{Cl}_X(\text{Int}_X(A)) = A$.

2. Definitions and remarks. The following definitions of boundedness and its generalizations are due to P. Th. Lambrinos [3]. A family $\mathcal{F} \subseteq 2^X$ is called an ideal on X if the family $\mathcal{F}^c = \{X - F \mid F \in \mathcal{F}\}$ is a filter on X. A subfamily \mathcal{F}^* of an ideal \mathcal{F} is called a base (resp. subbase) of \mathcal{F} if $\mathcal{F}^c = \{X - F \mid F \in \mathcal{F}^*\}$ is a base (resp. subbase) of \mathcal{F}^c. An ideal \mathcal{F} is said to be local on a subset A of X if for each point $x \in A$, there exists a member $F \in \mathcal{F}$ such that F is an open set containing x.

DEFINITION 1. A subset A of X is said to be bounded (resp. almost-bounded, nearly-bounded) in X [3] if A belongs to every ideal \mathcal{F} on X having the following properties: 1) \mathcal{F} is local on X; 2) \mathcal{F} has a base (resp. base, subbase) consisting of open (resp. closed, regularly open) sets.

Remark 1. It is known that boundedness \Rightarrow near-boundedness \Rightarrow almost-boundedness, but none of these implications is reversible [3].
Definition 2. A function \(f: X \to Y \) is said to have nearly-bounded (resp. bounded) point inverses if for each point \(y \in Y \), \(f^{-1}(y) \) is nearly-bounded (resp. bounded) in \(X \).

We shall recall some definitions of functions which are weaker than continuous functions.

Definition 3. A function \(f: X \to Y \) is said to be almost-continuous (resp. \(\theta \)-continuous, weakly-continuous) [10] (resp. [1], [5]) if for each point \(x \in X \) and each neighborhood \(V \) of \(f(x) \) in \(Y \), there exists a neighborhood \(U \) of \(x \) in \(X \) such that
\[
f(U) \subseteq \text{Int}_Y(\text{Cl}_Y(V)) \quad \text{(resp. } f(\text{Cl}_X(U)) \subseteq \text{Cl}_Y(V), f(U) \subseteq \text{Cl}_Y(V)).\]

Remark 2. It is known that continuity \(\Rightarrow \) almost-continuity \(\Rightarrow \) \(\theta \)-continuity \(\Rightarrow \) weak-continuity [8], [10].

Definition 4. A function \(f: X \to Y \) is said to be almost-open (resp. almost-closed) [10] if for each regularly open (resp. regularly closed) set \(A \) of \(X \), \(f(A) \) is open (resp. closed) in \(Y \).

Remark 3. Every open (resp. closed) function is almost-open (resp. almost-closed), but the converse does not hold [10].

3. The \(\theta \)-continuous image of an almost-bounded set. The following lemmas, due to P. Th. Lambrinos, are very useful in the sequel.

Lemma 1 (Lambrinos [2]). A subset \(A \) of \(X \) is bounded in \(X \) if and only if for any open cover \(\mathcal{U} \) of \(X \), there exists a finite subfamily \(\mathcal{U}_0 \) of \(\mathcal{U} \) such that \(A \subseteq \bigcup \{ U \mid U \in \mathcal{U}_0 \} \).

Lemma 2 (Lambrinos [3]). A subset \(A \) of \(X \) is almost-bounded (resp. nearly-bounded) in \(X \) if and only if for any open cover \(\mathcal{U} \) of \(X \), there exists a finite subfamily \(\mathcal{U}_0 \) of \(\mathcal{U} \) such that
\[A \subseteq \bigcup \{ \text{Cl}_X(U) \mid U \in \mathcal{U}_0 \} \quad \text{(resp. } A \subseteq \bigcup \{ \text{Int}_X(\text{Cl}_X(U)) \mid U \in \mathcal{U}_0 \}).\]

P. Th. Lambrinos showed that the continuous image of an almost-bounded set is almost-bounded [3], Theorem 3.1. The word "continuous" in this result can be replaced by "\(\theta \)-continuous", as the following theorem shows.

Theorem 1. The \(\theta \)-continuous image of an almost-bounded set is almost-bounded.

Proof. Suppose that \(f: X \to Y \) is a \(\theta \)-continuous function and \(A \) is an almost-bounded set in \(X \). We shall show that \(f(A) \) is an almost-bounded set in \(Y \). For this purpose let \(\{ V_{a} \mid a \in \mathcal{A} \} \) be any open cover of \(Y \). Then for each point \(a \in X \), there exists an element \(a(x) \in \mathcal{A} \) such that \(f(x) \in V_{a(x)}. \) Since \(f \) is \(\theta \)-continuous, there exists an open neighborhood \(U_{a(x)} \) of \(x \) in \(X \) such that \(f(\text{Cl}_X(U_{a(x)})) \subseteq \text{Cl}_Y(V_{a(x)}). \) The family \(\{ U_{a(x)} \mid x \in X \} \) is an open cover of \(X \). Since \(A \) is almost-bounded in \(X \), by Lemma 2,
there exists a finite subfamily \(\{a(w_1), a(w_2), \ldots, a(w_n)\} \) of \(A \) such that
\[A \subseteq \bigcup \{ \text{Cl}_X(Ua(x_j)) \mid j = 1, \ldots, n \}. \]
Therefore, we have
\[f(A) \subseteq \bigcup_{j=1}^n f(\text{Cl}_X(Ua(x_j))) \subseteq \bigcup_{j=1}^n \text{Cl}_Y(Va(w_j)). \]
By Lemma 2, we observe that \(f(A) \) is almost-bounded in \(Y \).

Theorem 2. The \(\theta \)-continuous almost-open image of a nearly-bounded set is nearly-bounded.

Proof. Suppose that \(f: X \to Y \) is a \(\theta \)-continuous almost-open function and \(A \) is a nearly-bounded set in \(X \). We shall show that \(f(A) \) is a nearly-bounded set in \(Y \). For this purpose let \(\{V\alpha \mid \alpha \in A\} \) be any open cover of \(Y \). Then the family \(\{\text{Int}_Y(\text{Cl}_Y(V\alpha)) \mid \alpha \in A\} \) is a regularly open cover of \(Y \). Since \(f \) is \(\theta \)-continuous almost-open, it is almost-continuous [6], Theorem 4. Since the inverse image of a regularly open set under an almost-continuous and almost-open function is regularly open [7], Lemma 1, the family \(\{f^{-1}(\text{Int}_Y(\text{Cl}_Y(V\alpha))) \mid \alpha \in A\} \) is a regularly open cover of \(X \). Since \(A \) is nearly-bounded in \(X \), by Lemma 2, there exists a finite subfamily \(A_0 \) of \(A \) such that
\[A \subseteq \bigcup \{f^{-1}(\text{Int}_Y(\text{Cl}_Y(V\alpha))) \mid \alpha \in A_0\}. \]
Thus we have
\[f(A) \subseteq \bigcup \{\text{Int}_Y(\text{Cl}_Y(V\alpha)) \mid \alpha \in A_0\}. \]

By Lemma 2, we observe that \(f(A) \) is nearly-bounded in \(Y \).

Corollary 1 (Lambrinos [3]). Let \(f: X \to Y \) be a continuous (resp. continuous open) function. If \(A \) is an almost-bounded (resp. nearly-bounded) set in \(X \), then \(f(A) \) is almost-bounded (resp. nearly-bounded) in \(Y \).

Proof. This is an immediate consequence of Theorem 1 and Theorem 2.

Theorem 3. The almost-continuous (resp. weakly-continuous) image of a bounded set is nearly-bounded (resp. almost-bounded).

Proof. This is proven similarly to Theorem 1.

4. The inverse image of an almost-bounded set.

Lemma 3 (Sikorski [9]). A function \(f: X \to Y \) is open if and only if
\[f^{-1}(\text{Cl}_Y(B)) \subseteq \text{Cl}_X(f^{-1}(B)) \]
for every subset \(B \) of \(Y \).

Theorem 4. The inverse image of an almost-bounded set under an open and almost-closed surjection with nearly-bounded point inverses is almost-bounded.

Proof. Suppose that \(f: X \to Y \) is an open and almost-closed surjection with nearly-bounded point inverses. Let \(B \) be an almost-bounded set in \(Y \) and we will show that \(f^{-1}(B) \) is an almost-bounded set in \(X \). Let \(\{U\alpha \mid \alpha \in A\} \) be any open cover of \(X \). Since \(f \) has nearly-bounded point inverses, for each point \(y \in Y \), there exists a finite subset \(A(y) \) of \(A \) such that
\[f^{-1}(y) \subseteq \bigcup \{\text{Int}_X(\text{Cl}_X(U\alpha)) \mid \alpha \in A(y)\}. \]
Let us put \(Uy \)}
= \text{Int}_X \left[\bigcup \{ \text{Cl}_X(Ua) \mid a \in \mathcal{A}(y) \} \right]$, then Uy is a regularly open set containing $f^{-1}(y)$. Moreover, put $Vy = Y - f(X - Uy)$, then we obtain $f^{-1}(Vy) \subseteq Uy$ and Vy is an open neighborhood of y in Y because f is almost-closed. The family $\{ Vy \mid y \in Y \}$ is an open cover of Y. Since B is almost-bounded in Y, by Lemma 2, there exist a finite number of points y_1, y_2, \ldots, y_n in Y such that $B \subseteq \bigcup \{ \text{Cl}_Y(Vy_j) \mid j = 1, 2, \ldots, n \}$. Since f is open, by using Lemma 3, we obtain

$$f^{-1}(B) = \bigcup_{j=1}^n f^{-1}(\text{Cl}_Y(Vy_j)) \subseteq \bigcup_{j=1}^n \text{Cl}_X(f^{-1}(Vy_j)) \subseteq \bigcup_{j=1}^n \text{Cl}_X(Uy_j)$$

$$= \bigcup_{j=1}^n \bigcup_{a \in \mathcal{A}(y_j)} \text{Cl}_X(Ua).$$

By Lemma 2, we observe that $f^{-1}(B)$ is almost-bounded in X.

Remark 4. In Theorem 4, the assumption "open" can be replaced by the following condition: $f^{-1}(\text{Cl}_Y(V)) \subseteq \text{Cl}_X(f^{-1}(V))$ for every open set V of Y.

Corollary 2. Let $f : X \to Y$ be a perfect (closed continuous surjection with compact point inverses) open function. If A is an almost-bounded set in X (resp. Y), then $f(A)$ (resp. $f^{-1}(A)$) is almost-bounded in Y (resp. X).

Proof. This is an immediate consequence of Theorem 1 and Theorem 4.

Theorem 5. The inverse image of a bounded set under an almost-closed surjection with nearly-bounded point inverses is almost-bounded.

Proof. Suppose that $f : X \to Y$ is an almost-closed surjection with nearly-bounded point inverses. Let B be a bounded set in Y and we will show that $f^{-1}(B)$ is almost-bounded in X. Let $\{ Ua \mid a \in \mathcal{A} \}$ be any open cover of X. Similarly to the proof of Theorem 4, for each point $y \in Y$, there exist a finite subfamily $\mathcal{A}(y)$ of \mathcal{A} and an open neighborhood Vy of y in Y such that $f^{-1}(Vy) \subseteq \bigcup \{ \text{Cl}_X(Ua) \mid a \in \mathcal{A}(y) \}$ because f is almost-closed and $f^{-1}(y)$ is nearly-bounded. The family $\{ Vy \mid y \in Y \}$ is an open cover of Y. Since B is a bounded set in Y, by Lemma 1, there exist a finite number of point y_1, y_2, \ldots, y_n in Y such that $B \subseteq \bigcup \{ Vy_j \mid j = 1, 2, \ldots, n \}$. Therefore, we obtain

$$f^{-1}(B) = \bigcup_{j=1}^n f^{-1}(Vy_j) \subseteq \bigcup_{j=1}^n \bigcup_{a \in \mathcal{A}(y_j)} \text{Cl}_X(Ua).$$

By Lemma 2, we observe that $f^{-1}(B)$ is almost-bounded in X.

Theorem 6. The inverse image of a bounded set under a closed surjection with nearly-bounded (resp. bounded) point inverses is nearly-bounded (resp. bounded).

Proof. This is proven similarly to Theorem 4.
References

YATSUSHIRO COLLEGE OF TECHNOLOGY, YATSUSHIRO, JAPAN