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8. KrypeEL and J. Mustarek (Krakow)

On a mixed problem for the biharmonic equdtion

The paper presents a construction of the Green function and the solu-
tion of the boundary problem for the biharmonic equation

(1) A*u(x,y,2) =0

intheregion D = {(#,y,?): > 0, — o0 << y < o0,z > 0} with the conditions
(2) limu(z, ¥, 2) = fi(2q,9,) when (z,y,2) (@, Yo, 07), 2> 0,
(3) lim Au(z, vy, z) = fo(%9, ¥o) When (z, y, 2) - (%, Yo, 01), 1, > 0,
(4) NmD u(x,y,2) = fs(¥, %) When (z,y,2) (0%, yy, 2),2,> 0,
(8) YmD,Au(x,y, 2 =f4(yo, 2,) when (z,y,2) = (0", ¥, 25), 2o > 0.
" For the functions f; (# =1, 2, 3, 4) we assume that

(6) fi (6 =1,2,3) are absolutely integrable,

(7)  the integral

fm fm |fa (2, w) | (w* + 1) didaw

0
is convergent,

(8) fi (=1,2,3,4) are bounded and continuous.

Let us denote the boundary problem (1), (2), (3), (4) and (5) by (B.R.N).
Let us consider the following arrangements of points: X (z, ¥, 2)eD,
Xi(—w»,y,2), Xy(—,y,—2) and X,(z,y, —2). Let Y(s,t,w) bea

point of E,. Let us write ‘
2

= (= (=g R e, 7 = (s a) Y~ (w2,
1=+ Ly +w+2)?, 3= (s—2)+(—y)E+(w )
Let us denote two half-planes by 8, and 8,
S, ={w7?/7z): 2> 0, |yl < oo, 2 :0}7

= {z,y,2): & =0, Jy] < o0, 2> 0}.



202 S. Krypel and J. Musiatek
THEOREM 1. The Green function for the problem (B.R.N) with the pole
X is of the form
(9) G¢X,Y) =n+H(X,Y),
where

H(X,Y) =r,—r,—1,.

Proof. The function G(X, ¥) is biharmonic as a function of ¥ (2).
It is easy to prove that

(10) ApG(X, ¥) =207 —oit Frt =yt

We shall now prove that the funetion G(X, Y) satisfies the boundary
conditions

(@) (X, YV)|poo = AdpG(X, Y)|yy =0  for YeS,
and
(b) DG (X, Y)|mp =D, AyG(X, Y)|og =0 for YeS,.

For Ye 8; we have r, = r, and r, = r,. Basing on (10) we obtain (a).
For Ye 8, we have r; = r, and r, = r,. Notice that
D,G(X, Y)|s_o = D;G(X, Y|
= [(s —a)r{' — (s —a)ry (s + )17t — (5 +2) 75 T smp = 0,
D, dyG(X, Y)|sy = D Ay G(X, Y)|oeo
= —[(s—@)r{* +(s + o)1y’ — (@ + )75 — (s — @)1 5o
= 0.
Thus (b) is satisfied. Moreover,
(e) IimAd,G(X,Y) =0 when OY—oco

for an arbitrary fixed X.
Applying the fundamental formula for the biharmonic equation (1)

fff(uz]%—vd%a)dV%—ff (4uD,v—vD, Au +uD, Av— AvD,u)dS = 0
D oD

to the function v = G(X, Y) presented by formula (9), and taking into
consideration boundary conditions (a), (b) for the function G(X, Y),
and boundary conditions (2), (3), (4) and (5) for the function u(X) we

() M. Krzyzanski, Partial differential equations of second order, vol. 11, p. 234,
Warszawa 1971,
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obtain
1 o0 (o) .
(D) wX) =5 [ [ £, ) Dp Ar @, T)|umodsdt+
0 — 00

1 o o
to= | 5, 0DGX, Tfympdsit +
8 P

[o o2 < ]

+= j'offs(t,w)AYG(X, Y)|modtd +

oo .

-1 g
t— [ [ At w6, Vit
T 0

-

Let us prove now that the function given by formula (11) is the solution
of the problem (B.R.N).
Let

B} = (@—sp+@—i)+2*, B} = (@+s) -y 1)+,

By = ot (y —t)* +(e—w),  Rf=at g —0 (e tw)?
and

Ni(X,s,10) =2R1_3, Ny(X,s,1) =2R2—37
Ny(X,s,t) =2R*, Ni(X,s,t) =R,

and
My (X, t, w) = Ry, Mo (X, 8, w) = Ry,
My(X, t, w) = Ry, M (X, &, w) = R,.

We have then

(12) Dy, Ay G(X, Y)|ypoy = 42B° +42B;° = 4[N (X, 5,1) + Ny(X, 5, )],

(13) D,G (X, Y)|poo = —22R7" —22R;

= —2[N,(X, 8,1 -+ N, (X, s, D],
(14)  A,6(X, Y)|goo = 4R7' — 4R =4[ M (X, 8, w) —My(X, ¢, w)],
(15) G(X, YV)|soo = 2B, — 2R, = 2[M,(X, t, w)—M,(X, ¢, w)].

Substituting expressions (12), (13), (14) and (15) by (11), we obtain

i

(11a) w(X) = ¥ Ii(X)+ZJi(X),

1 =1
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where
1 £ F .
=7f ffl(s,t)N,.(X,s,t)dsdt, i=1,2,
TCO -_—
1,(X) =E—f f (s, ) Ny(X, s, ) dsdt, i =3,4,
1] -—00
. 1 2 ,
Ji(X) = (~1) 5= f f MUX,t, wdtdw, i=1,2,

J.(X) = ( 1)f f ff4(t w) My(X,t, w)dtdw, §=3,4.
Let

(X f f £:(8, ) Dypyar N3 (X, 8, ) dsdt,
where p,q,* =0,1,2,3,4; ¢ =1,2;j=1,2,3,4.
Let

(X)) = [ [ fult, ©) Dupyar M, (X, t, w) dbdu,

—o0 0
.

where p,r,q =0,1,2,3,4; j =1,2, and

JI (X f f f.(t w)Dxpyqer at dw,
-0 0
where p,q,r =0,1,2,4,3; j =4,3.
We shall consider two perpendicular parallelepipeds
W,y = (A;, By x{4;, By) X<{43, B3),
W, = (Cyy D) {04y Dy> {03, Dsp,
where 4; (+ =1,2), B; (¢t =1,2,3), D; (+ =1,2,3), C; (4 =2, 3) are ar-

bitrary constants and A4,, C; are arbitrary positive constants.
Let

Z(t, w, 0) = (B2 +w?) > Q27 w> 0,
Zo(s, ¢, 0) = (s3+1%) > 0%, 8 > 0).

LEMMA 1. Let the functions f; (4 =1, 2, 3, 4) satisfy assumptions (6)
and (7). Then the integrals I3 (X) are uniformly convergent for Xe W,
and the integrals JE¥ (X) are umformly convergent for Xe Ws.
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Proof. We shall prove that the integrals I?¥ and J¥ are uniformly
convergent. The proof for the remaining integrals is the same.
The proof for the integral Ji¥. We have

D

zPyes"

&zp(wl (y—1)™ wﬂww

Ra+01’  RAEtby 7 pasths

where P(i;, 15, 1;) is the polynomial of the n-th degree (n < 16) and a;, b;
are non-negative integers and p+¢q-+r> 0.
In view of the triangle inequality we have

2

w2
Sei4(t—-y)+

* VA A [t=+w2>R§,w>0=>

Ry (.w) (2,9,2) Wy
+(e—w) < 4(t2—|—w2)].
‘We have also

x4
a
R

(2 —w)

<1.
Rp |

< \17

{y—u™
R“2
y (*) and from the last inequalibies we obtain the estimate

} f [£.¢, w)D pyqer3dtd'w] <20 [ f \f. (, w)] (w? + 12) dtdw

(C a positive constant) which holds true for ¢ > R, (where E, is any posi-
tive constant) and every Xe W,. Let ¢ be an arbitrary positive number.
Assumption (7) shows that there exists a number R, such that

[ Vst w)1 (w2 832 dtdeo <
Z

holds true for every g > R, and for every Xe W,.
We will prove now that the integral I (X) is uniformly convergent
for Xe W,. Let us notice that

(@—s)t  (y—9)™ &%
-3
Dypyar2RT° = @ (z ’ R‘;""cl ’ Rite ! Rf*”-”)’

where Q(t,, ty, {3, t,) is the polynomial of the n- th degree (n < 16).
We can also see that

| 2%

(z—s8)1
b l Rf3

c
RSt

y—1)°2

-3
[le l b Rizz

3

are not greater than 1.

4 — Roczniki PTM — Prace Matematyczne XVIII
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Now, from the last inequalities and by inequality similar to (x), we
get

lfffl 5,1 D p,,qzrzR'adsdtl< ff \fu(s, B)l dsdt

(C a positive constant) holds true for o > R, (E, any positive constant)

and every Xe W,.
Let &> 0. From assumption (6) it follows that there is a number

R, > 0 such that
[[ifals, tldsat< e
Zy

for every o> R, and for every X« W;.

From Lemma 1 we get

LeMmMa 2. If the assumptions of Lemma 1 are satisfied, then the derivatives
D oyarl(X) exist for 2 > 0 and we may inlerchange the order of the differen-
tiation and the integration: .

Dyoyurl;(X) = o f f £1(8, V) Dypar No( X 5, 8)ds dt,
-00
where © =1,2,3,435 1 =1,2; o are some constants and there exist the
derivatives D par J(X) for x>0 and

-

Dypyar Ji(X) =B [ [ filt, w) Damyar My( X, 1, w) dtdow
—o00 0
where ¢ =1,2,3,4; 1 = 3,4; p; are some constanis.
LEana 3. Let the functions f; (i = 1, 2, 3, 4) satisfy assumptions (6) and
(7). Then the function w(X), given by formula (11), satisfies equation (1)
in the region D. :
With the uniform convergence of suitable integrals and since G(X, Y)
is a symmetric and biharmonic function, we obtain

-~

1 o0 o0
Aru :g.f f (85 0) Dy A G X, 7)o dsdt +
"

4

[0 2]
:ll"‘

f f Fo(8, ) Dy A5G (X, T)poodsdt |
0 =00 -

1 oo o0
[ [ fts 0y 46(x, D)]ocoitaw +
8w ~00 0
1 00 00
— [ [0 4560x, ¥)|yttaw = o.
-00 0
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In view of (11) and from the symmetry of G(X, ¥) and by uniform
convergence of some integrals we obtain

o]

Au(X) =%f ffl(s,t)DwAzyG(X, )y ds dt -

-—00

[> - B~ o 4

1
+ Ef ffz(s, 1)Dy, Ay G(X, Y)|ymodsdi +

0 —oc

-1 P x )
T8 ffﬁ(t’w)dyG(X, Y)|omodtdw 4
0

— ff Fulty 0) A G (X, T)|o_odtdo.
—o0 0

Since the function G(X, Y) is biharmonie, from (12) we get

1 o0 o 1 [e} o
(16)  du(X) =§f fz(s,t)le'3dsdt+2—f ffz(s,t)zRgadsdt+
™
¢ —00 (i} -0

—1 Pl oo 00
+T_f;,[ 4(t, w)Raldtdw+—— fff"(t’ w) Ry dtdw,

—o0 0

(17)  Dyu(X) =%f ffl(s,t)z(s—m)Rfsdsdtf

(o8]

3
- fi(s, Ya(z+s) R dsdt -
—1

i
fw fmfg(s t)2(s —x) Ry dsdt -

47
—o0

4

a

0
1 o [oe3
—f ffzs 0)z(x+s) Ry dsdt +
[} — 00

¥le

o0 oo _ ~_1 o oo

—00 0O
_1 o0 oo N 1 l'.>‘0 o0
= ffﬁ,(t,w)sz atdw +—— f ff.,(t,w)wR;ldtdw

™ i
- 0 -0 0
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and

oo

(18) D, du(X) ———f ff2st (s — @) Ry dsdt +

o

-3 s
+2—"of _ifz(s,t)z(m+s)R2 dsdi +

(o < B e o]

oo oo

1 —1

to- [ [ ftwrteataw+—— [ [ fit, 0 B odian,
2r A 21 oy

‘We shall now prove that the function #(X) defined by (11) satisfies
condition (2). Let

‘fl(st for s>0,t>0,
1(8, 1) =
for s <0, t1<0.
Let
L(X) = L (X)+ Ly (X),
where
L, (X) = [fi(s, ) —fi(= ,?io)]ZR *dsdt,
Eéf—\ia ’
LX) = 5= l{ [ hats, 0= falamo, o) leRrasat
and -
Ky = {(s,1t): (s—m)2+(t —y,)% < 6%}.
LevMA 4.
27)" [ [ fal®o, yo) 2R dsdt = £, (w0, yo)-
By
Proof. Let

J(X) = (2m)~" [ [ 2R dsdt.
By

Applying transformation s =& 4-2t;,% =y +2t,, |J| =22 and then
introducing the polar coordinates, we get

J(X) = @0 [ [+ 4+ @) Pdndt, — 1.

Multiplying the last quality by f,(zq, ¥,) We obtain

J(X)f1(@oy Yo) = f1(@g, Yo)-
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LexA 5. Let the function fi(s,t) satisfy assumption (8) and let the

integral
2r

-+
L}
4

exist for every point (z,y)e E, and every 6> 0
Then HmL,(X) = lim Ly(X) = 0 when (@, y, 2) = (Lo, ¥, 0F).

lfl(w+7COSa, y +rsina)|drda

0

Proof. Let

6% 67
2, = (s, 8: (o +(t—9)'> S0 A =0+ U9 < .

For the integral L,(X) we have the estimate

1 .
1L ()] < o ! [ ey ~fi(o yo)l 5 dsd.

Applying the polar coordinates s —x = rcosa, t—¥y = rsina, where
di<r< o, 0<a<2r, we have
L ; —3/2
LX) <— { f |fi(@+rcosa, y +rsina)|z(r2 220 rdrda +
]
1

1

+o j oo 3010 4P drda
[
rt

Under assumptions of Lemma 5 the last two integrals are conver-
gent to zero when (x, y, 2) — (%9, ¥, 07). With Lemma 4 and assumption

(8), for the inéegra,l L,(X), we have the estimates

1 -
LX) < - [ [ 1i(s, ) ~Fi @0, golleBr*dsdt <5 [ [ aBdsit o
s 7: By
Leaa 6. If the function fy(s, t) satisfies assumption (8), then lim I, (X)

= f1(@o, Yo) when (@, ¥, 2)—>(2,, Yo, 0F)
Proof. The integral I,(X) may be presented in this form

< 1 =
[ Futs, neRrtasd — £ [ 1o, &)= Fu(ao, yo)1eR7 dsdt +

1 v
+~H fu(@o, yo) 2R ds dt.
Ky

I1(X) =5
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From Lemmga 4 we have

X) —f1(#9, 9o) = L(X).

Now, from Lemma 5 we get Lemma 6.

LeMMA 7. With assumption (8)
IimI,(X) =limI,(X) =0 when (x, ¥y, 2) = (Lo, Yo, 07).

Proof. We shall prove that I,(X)—0 when (z, ¥, 2) = (2, ¥g, 0F).
Let 2,/2 < < 22y and z+s = . For the integral I,(X) we have then
the estimates

1 o [o9]
LX) < 5= f f o (8 — @, )2 [102 -+ (g —12) -+ 2212 Qudt
0 -0
2

<%ff fy(w — @, Ble[u?+(y — )2 +22]"  dudt
Dy
<M {fz[uz+(y—t)2+z2]”3’2dudt,
D

where D, = {(u,1): 42+ > x;/4} and M — a positive constant.
Applying the transformation # = rcosa, ¥y =t--rsina, —rw2<a
< w[2, #,/2 < ¥ << co we obtain

1
2(r2 428" ydrda = Mz —— - >0 whenz—>0".

VT

The proof that I,(X)— 0 is similar to that of the proof for I,(X).

LemMA 8. If the functions f,(t, w) and f,(t, w) are absolutely integrable
and continuous, then

=l

=
o

lim [J,(X) — J4(X)] = im[J,(X)—J5(X)] = 0 /
when (@, Y, 2) — (@9, Yoy 0F).

Proof. The assertion of Lemma 8 follows as a consequence of con-
tinuity of the integrals J;(X) (¢ =1, 2, 3, 4) which are uniformly con-
vergent in the set W,.

From Lemmas 6, 7 and 8 and by (11a) follows

LemmaA 9. If the assumptions of Lemmas 6, 7 and 8 are satisfied and
if imI,(X) = 0 when (2, y, 2) — (g, Yo, 07), then the function u(X) given
by formula (11a) satisfies condition (2).
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We will prove now that the function #(X), given by formula (11a),
satisfies the boundary condition (3).

Leania 10. If the function fo(s,t) satisfies the assumptions of Lemmas
5 and 6, then

IO

tim| e [ [ A, DaR s de| = fulan, ) when (2,0,0) > (00,30,0").
n
0 —00 i

Proof. Applying Lemmas 5 aJnTi 6 to the function f,(s, t) we obtain
the thesis of Lemma 10.

LimMa 11. If the assumptions of Lemmas 7 and 8 are satisfied, then

1 o0 o0
nm[—f f fals, t)zR;wsdt] —0
21 J

and
[oe)

1 d 1o
lim[——— ’ ’ fult, w) R dtdw — —— f fﬁ,(t, w)R;ldtdw] =0
2 . ; 2 A

when (2, Y, 2) = (Xy, Yo, 07).

Proof. The proof of the first thesis is similax to the proof of Lemma 7
and the second one is similar to the proof of Lemma 8.

As a consequence of Lemmas 10 and 11 and formula (14) we obtain
the following

Lrama 12, If the assumptions of Lemmas 10 and 11 are satisfied, then
the function u(X) given by formula (11a), satisfies the boundary conditions (3).

The integrals given by (17) and (18) are of the same type as the inte-
grals given by (11a) and (16). For these integrals we can prove lemmas
similar to Lemmas 4, 5, 6, 7 and 8 and consequently we obtain

Lrvma 13. If assumptions (6), (7) and (B) are satisfied, then the funetion
u(X), given by formula (11a), satisfies boundary conditions (4) and (5).

From Lemmas 2, 3, 9, 12 and 13 we get )

TrworeM 2. If the assumptions of Lemmas 2, 3, 9, 12 and 13 are satis-
fied, then the function w(X), defined by formula (11) or (11a), is the solution
of the problem (B.R.N).



