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Norlund summability of the derived series of Fourier series

o0
1. Let > a, be a given infinite series with the sequence of partial
n=>0

sums {8,}. Let {p,} be a sequence of real constants and

P, = py+pi+...+p,, Py =p_;=0.

In the sequel it is assumed that for » > 0, P, # 0 and P, — oo a8
n — o0,

Let p(t) be continuous in (0, co), linear in each interval (n,n-41)
{m»=0,1,2,...) and such that p(n) =p, for n =0,1,2,... Also we

write P(u) = [ p(z)de so that P(n) ~ P, as n — oo.
0

The transformation
n

t, = — S,
n P p?l*i’

v

L

defines the n-th (¥, p,) mean or the n-th Norlund mean of the sequence S,,.
If

lim ¢, = 8, ’
N>

the series Y a, is said to be summable (N, p,) to the sum S.

2. Let f(t) be a continuous function of bounded variation, periodic
with period 2= and integrable in (—m, w). Let the function f(f) have
a derivative f'(x) at the point ¢ = # and let the Fourier Series associated
with f(t) be

2.1) La, + 2 (&, cosnt+ b,sinnt),
n=1

where the constants a, and b, are given by the usual Euler-Fourier for-
mulae.
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The derived series of Fourier series is

(2.2) - Z n (b, cosnt — a,Sinnt)

n=1
and its allied series is
(2.3) Z n(a,cosnt-+ b, sinnt).
n=1

In this paper we adopt the following notations:

g(t) = fla+t)—fl@a—1)—2if (2),
h(t) = fl@+ )+ fle—1)—2f(x),

¢

Gy = [ ldg(u),

1]

t
X = [lanw),
0

l ki
H,(x)= I f h({t)cosec?tdt.

1/n

3. The Norlund summability of a Fourier series and its allied series
has been studied by a number of workers such as Iyengar [4], Siddiqi [9],
Pati [7], Singh [10], Rajagopal [8], Hirockawa and Kayashima [2], Hiro-
kawa [1], M. Tzumi and 8. Izumi [5] and others. In this paper we establish
the following two theorems on the Norlund Summability of the derived
series of Fourier Series and its allied series.

THEOREM 1. If

t ,
(3.1) G(1) Ef dg ()] = o — -
" ()

t]

as t— 0 and p, is & positive sequence such that
n

(3:2) Julp’ wldu = 0(P,)
1

as n— oo, then the derived series of Fourier series of f(x) is swummable (N, p,)
to the sum f (x) at the point x.

THEOREM 2. If p, i a positive sequence satisfying condition (3.1)
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#l3)
(7]

as t— 0, then series (2.3) is summable (N, p,) to the sum

and

t
szjﬁmwn:o

l k13
———fh(t)cosec%tdt
4r g

at every point x at which this integral exists.

It is interesting to note that these theorems generalize earlier results
due to Tripathi ([11], [12]) and Joshi [6].

The following lemma is required in the proof of Theorem 1:

LevmA [5]. For t = 1/n,

n n
Dpsin(n—k+3)t = 0P+ 0 {p(Lf)+ put [ 1p'(w)ldu}.
k=0 1/¢

4. Proof of Theorem 1. Before proceeding with the proof of the

theorem we note that (see [5]) hypothesis (3.2) of the theorem implies
that

(1) np, = O(F,)
a8 % — oo, Clearly if (4.1) is satisfied, then (3.1) gives
(4.2) G() = o(t)
as t— 0.
We have
o, (%) = 2 v(b,cosve— a, sinyz)
=1
d [ Ynj(av, cosvx-+b sinvw)]
=5 v v v
dx ‘véf
an . 1 .
:_}_f f(u){i sm(;n—!; ) (@—) }du
2r g dx sin i (x—u)

B _Lfﬂf(u) _d—{ﬁsin('n—l— %) (w—u) }du
27

o du sind(x—u)

1~ d (sin(n+1)u
= —gof {f(w+%)—f(w—“)}—d;{—‘———sin%u }du,
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so that on integration by parts

1 r sin(n-+3)wu
o, (@) :—f Pt
27 d sindu

It is known that

a{f(@+u)—flz—u)}.

1 [ sin 3

2n sin 3u
1]
and therefore
gin (n +13
SlIl sU

"l e w)— flo—w)—2f (@) )du

, 1
on(@)—f (@) = 5 - f

1 f sin(n-- 4)u

2z sindu

dg(u).

In order to establish the theorem we have to show that

1 v ,
(4.3) lim [E g:’pk(an_k—f @)| =o.

Now

EE PN——
" k=0
s | S panin s

i/n
1 dg ()
- 27 P f sin 1t (ZkaIn(n—k+ 2”)

F dg (1)
27:P sin 1t

Zpksin(n—k—{— %)t) — 1,41, say.
=0

Let us first eonsuier I,. We have

(4.5) 1, ~0( )f g )|

1/n

=0(m) [ |dg(t)

1
= 0(n) - o( ) = o0(1),
n

as n — oo, by the application of (4.2).
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Making use of the lemma, we have

o ol [ [ A) e 52

¢ ldg (D) ldg(t |
: f| wia

ol (1),

1/n
dg(t
" f"‘;( ! flp'(u)ldu]

1/n 1/t

1 1 1
remembering that 5P (7) =0 (P (7)), as t— 0.
i%y integration by parts and hypothesis (3.1) we have

1 [ ldg() (1
(4.7) - - P(T)

(2)
1y f°\t
dt *lr“O (—P;—) }[ 2 -— dt

P, i/n P(i) # 1/
t
=0(1)-+ 1)fn du = o(l
O(E ; plu)du = )y
a8 n — oco. Also
P [ ldg(t)

(4.8)

n 1/n

P, [1 g P fG(t)
"G 2 dt
Pn[tz G( )]l/"+ Pn 13

:o(1>+o(%) %=o<1>+o(%ﬁ)=om,

1/n

48 N~ oo, by the application of (4.1).
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Fina]ly
“@9) f 1dg0) f )| du
1/n 1/t
1 [6@ [
| [ na] n+-— du—

1/t 1/n 1/t

1 G Ip' /D)
Ef 7 ratl

in

-ofg) freo[ ) [ [

lm 1/n 1/t

+o(—1——)fwdt

3
%/ iin ¢

=o(1)+0( )fip (u)ldu+o( )fdvflp ()| du-+

1w

n

+o(—5)1 /f 12 ()] du

-

~otw+0(- )f:p (Wldu = o(1),

if we show that

n

1
(4.10) 5| wian =oq),

1

as n — oo. We have

1 n 1 n 1 n 1 uw
(1) - f P’ ()l = - f ulp’ ()| du + - f —= f olp’ ()] dv

=o(%)+ 0(}51:)fP$) du

1\ P
— o)+ 0[] X'

k=1
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o0

and since the series D' 1/k* is convergent by virtue of a known result
k=1 .
(see Hobson {3], example 3 on p. 8) it follows that

(4.12) — > —5 =o(l),

ag n — co. Combining the estimates in (4.11) and (4.12) we find that
(4.10) is established.
Again combining the estimates in (4.6) through (4.9) we find that

(4.13) I, = o(1)
as n — oo, Finally from (4.4), (4.5) and (4.13) we get that

Zp”k (2)) = o(P,),

as n — oo and this establishes (4.3). Hence the theorem.

Proof of Theorem 2. If we denote by o,(x) the sum of the first
n terms of the series (2.3) at a point ¢ = x, then proceeding as in [11]
we have

dh(t)+-o(l).

sla)— Hylo) = [ kLD

sin 3¢
/n

Hence in order to establish the theorem we have to show that

2P, f jlilbl(ft (Z preos(n—k+- ) ) = o(1)

a8 n — oo, Buf this can be proved by exactly similar arguments as in
the case of the proof of I, = o(1) as n — oo, in the proof of Theorem 1.
This completes the proof of the theorem.

The author is deeply indebted to Dr. S. N. Lal for his valuable
guidance and suggestions.
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